
An Overview of Eiffel

Richard Paige

July 13, 1998

1 Introduction

This document contains a brief overview and introduction to the syntax and semantics of the Eiffel program-
ming language. It is not a complete description of the language: it does not discuss the ISE Eiffel libraries,
multiple inheritance, or genericity in full detail. It should not take the place of a legitimate language refer-
ence, e.g., [2, 3, 4]. It does, however, introduce the basic syntax of the language which you will need to use
in your assignments and project.

2 Classes and Objects

In Eiffel, the fundamental language construct is theclass. All Eiffel programs are made up of classes. A
class is used in the declaration and creation ofobjects. Eiffel programs manipulate objects to perform some
kind of computation. You can think of a class as consisting of all objects with the same behaviour and
properties.

In an Eiffel program, every object has a well definedtype and belongs to a class. Objects are referred
to by names, which are just strings of characters. A name can refer to different objects at different points
during execution.

A name in an Eiffel program is declared as having a type. The declaration

x : T

introduces a namex of typeT. However, after declaration,x does not refer to any objects: we say thatx is
not bound to an object. Namex can be bound to any object thattype conformsto typeT (more on this in a
moment). There are only three ways to achieve this binding.

1. Assignment instruction: the assignmentx:=y bindsx to the object to whichy is currently bound
(providing there is type conformance).

2. A creation instruction: the creation instruction!!x creates a new object of typeT, and bindsx to
it. This is similar tonew in C++.

3. Routine call: we will discuss this later.

Whenx is declared, but before any object has been explicitly bound to it,x is bound to nothing, expressed
as the objectvoid . We can see if an object is bound tovoid by writing x=void .

1

2.1 Basic Types

Eiffel allows programmers to define new types as classes. It also has a number ofbasic types(sometimes
calledembedded types) built-in. The basic types include

BOOLEAN, CHARACTER, INTEGER, REAL

Objects of these basic types are predefined, and so we can refer, in our programs, to standard objects like
true, false , or -37 . Names of basic types are initially bound to default values (false in the case of
BOOLEAN, 0 for INTEGER). The basic types come predefined with the following operators:

BOOLEAN not, or, and, implies, or else, and then
INTEGER +, -, *, //, \\, ˆ, <, >, <=, >=
REAL +, -, *, /, ˆ, <, >, <=, >=

Theor else andand then operators are short-circuiting. Note that// is integer division and\\
is modulus. Standard expression notation can be used in Eiffel.

3 Eiffel Instructions

Computations in Eiffel are specified usingexpressions(which calculate a value of some type) andinstruc-
tions. The basic instructions in Eiffel are summarized in this section.

3.1 Creation and assignment

We have already seen the two most important instructions. The creation instruction generates a new object
of some type, and binds a name to that object.

!!x

The type of the object bound tox will type conform to the type ofx . Assignment is used to alter the binding
of a name.x:=y binds namex to the object referenced byy .

3.2 Sequencing

A concatenation of instructions is merely a sequence.

instruction1
instruction2
...
instructionk

The instructions are executed one after the other. Semicolons can separate the instructions if desired.

3.3 Conditional

The conditional instruction carries out an instruction if some boolean condition istrue. Conditionals have
the following form.

2

if b1 then
c1

elseif b2 then
c2

...
elseif bk then

ck
else

ce
end

Each of thebs is aBOOLEANexpression and thecs are compound instructions. Theelse branch can be
omitted, as can theelseif s.

3.4 Iteration

The iteration instruction carries out some instruction repeatedly, until a boolean condition is fulfilled. Itera-
tions in Eiffel have the following form (there is only one form of iteration in Eiffel, unlike other languages).

from
c1 -- loop initialization, executed once

until
b -- exit condition

loop
c2 -- body of the loop

end

First, c1 is executed. Then, expressionb is evaluated. If it isfalse , thenc2 is executed andb is re-
evaluated. Ifb is true , then the iteration is complete.

Comments in Eiffel are introduced by the double dash,-- , and continue until the end of the line.

3.5 Procedures and functions

A procedure is a compound instruction associated with a name and possibly a list of parameters. Procedures
have the following form in Eiffel.

pname(a1:T1; a2:T2; ...; an:Tn) is
local

-- declaration of local variables
do

c -- body of pname
end

pname is the name given to the procedure being defined. Theas are the names of the arguments to the
procedure. The arguments have the types given by theTs. Thelocal clause is optional: it list the names
and types of any local variables. The body of the procedure,c , is the instructions that are to be executed
every timepname is called. Assignment to the arguments withinc is not permitted.

To call the procedurepname, we write

pname(e1,e2,...,en)

3

where thees are expressions of appropriate types; they are called the actual arguments.
Functions are analogous to procedures, except that they return a value. The text of a function definition

must declare the type of this returned value. The general form of a function definition is as follows.

fname(a1:T1; a2:T2; ...; an:Tn) : T is
local

-- declaration of local variables
do

c -- body of fname
end

We have declared that the functionfname will return an object of typeT when it is complete. There must
be a mechanism by which the bodyc specifies the value to be returned. This is achieved by an assignment
of the form

result := expression

in the bodyc . The predeclared nameresult may only be used in the body of a function (or in the
function’sensureclause, which we’ll see later), and the value it receives in the last such assignment carried
out inc is the value returned.

Functions and procedures may be recursive in Eiffel.

4 Classes

In Eiffel, one writes classes rather than programs. The text of an Eiffel class specifies the features (attributes
and methods) of each object belonging to the class. Text for a class will have the following form.

class CNAME
creation

-- the names of the creation procedures
feature

-- the declarations or definitions of
-- all class features

end

Thecreation clause is optional. If present, it names one or more commands appearing in thefeature
clause. One of these creation procedures must be called every time an object of the given class is created.
The job of this command is to initialize the object. To call the creation procedure, simply tag the name (and
arguments) of the procedure after the creation instruction, e.g.,

!!x.make(e1,e2)

The compiler will complain if a creation procedure is specified, but is not used during creation.
Though Eiffel has creation procedures, it has no ‘destruction’ procedures. Destruction is handled auto-

matically by a garbage collector.
Features of a class may be of the following forms.

� Attributes: i.e., lists of names of entities that belong to any instance of the class

� Queries: i.e., functions that belong to the class

4

� Commands: i.e., procedures that belong to the class

Here is an example.

class LIST
creation make
feature

count : INTEGER
first : NODE

empty : BOOLEAN is
do

result := (count=0)
end

add(x : ELEMENT) is
local

n : NODE
do

if not has(x) then
!!n
n.set_item(x)
n.set_next(first)
first := n
count := count+1

end
end

make is
do

count := 0
first := void

end
end LIST

Featurescount andfirst are attributes: objects of typesINTEGERandNODE, respectively.empty
is aBOOLEANquery, whileadd andmake are commands.make is also a creation procedure.

4.1 Accessing features

As hinted at already, features of a class are accessed using dot notation. Suppose we declare

x : LIST

Then to access featureadd applied to objectx , we write

x.add(y)

(wherey conforms to typeELEMENT). We will see shortly how to prevent clients from accessing features
of a class.

ASIDE. If a namex is not bound to any object (i.e.,x=void) then it is a run-time error to
evaluate any feature ofx by the dot notation.

It is not possible for one object to alter an attribute of another object via an assignment. So writing, e.g.,
x.first := n is an error. The only entity able to alter the attributes of an object is the object itself, via
its features.

5

4.2 Equality

The notion of equality in Eiffel is somewhat different from what you may have seen in other languages.
In every class, there is a predefined (i.e., you do not have to write it) boolean functionequal(x,y) that
returnstrue when

� both arguments are of the same type, and

� both arguments are equal attribute for attribute

Thus,equal(x,y) does a feature-by-feature comparison of objects. Note that this isnot the same asx=y ,
which istrue if and only if x andy refer to the same object. Figure 4.2 illustrates the situation.

item

next

item

next

item

next
En1

n2 n3

Fig. 1: Equality

In Figure 4.2, we have namesn1 , n2 , andn3 referring to the objects as shown. Clearly,n1 /= n2
(the two names refer to two distinct objects!). Butequal(n1,n2) is true , because the features of both
objects agree.

Note that= andequal agree on the basic types in Eiffel.

4.3 Visibility

A class may have features that should be accessible to clients (i.e., features that should be in the interface of
the class). A class may also have features that should be inaccessible and invisible to clients; these features
are implementation-oriented ones. Eiffel offers the ability toexport some features, and hide others. This
is done by thefeature clause in a class. There may be an arbitrary number offeature clauses, optionally
qualified with a list of classes to which the features are to be exported.

feature { C1, C2, ..., Ck }

All features between thisfeature clause and the next (or the end of the class) are exported only to classes
C1, C2, .., Ck . Thus, these and only these classes may use the exported features.

If the feature clause is not qualified by a list of classes, then the following features are exported to
all classes. This is equivalent to writing

feature { ANY }

To make a feature invisible to all classes, we write

feature { NONE }

This is a very strong restriction: the following features are also invisible to other objects of the same class!

6

5 Assertions and Contracts

Eiffel, unlike most languages, has built-in and powerful support for writingassertions. An assertion is a
boolean expression on the state of the program that is evaluated when it is reached during execution. If
an assertion evaluates totrue, execution continues; otherwise, execution may halt, or an exception may be
raised (see the references for details on exception handling).

There are five kinds of assertions in Eiffel.

1. Preconditions: assertions that must be true when a routine is called.

2. Postconditions:assertions that must be true when a routine returns.

3. General assertions: (via the check clause) assertions that must be true when execution reaches
them.

4. Class invariants: assertions that must be maintained true by all instances of a class.

5. Loop invariants: (which we will not discuss here)

Preconditions and postconditions are associated with routines of a class. The syntax of a procedure has the
following format.

pname(arglist) is
require

-- the preconditions
local

-- local variables
do

-- body of pname
ensure

-- the postconditions
end

The preconditions must be true when the routine is called, and the postconditions must have been established
(by the body of the routine) when the routine terminates. Therequire andensure clauses may appear
in functions, as well. Here is an example.

gcd(m,n : INTEGER) : INTEGER is
require m>=0 and then n>=0
do

if n=0 then
result := m

else
result := gcd(n, m\\n)

end
end

Assertions are limited to using the syntax of Eiffel’s boolean expressions; no logical quantifiers are permit-
ted. Calls to queries of an object are permitted in assertions.

7

5.1 Class invariants

The boolean expressions in a class invariant define conditions that must be true of all objects of the class at
‘stable’ times (essentially, upon exit from a method of a class). During execution of a method, the invariant
may be violated. Every method (excepting the creation procedures) can assume, when it starts to execute,
that its preconditions are metand the class invariant is satisfied. After execution, the postcondition must be
metand the class invariant must be satisfied.

The text of a class is expanded by aninvariant clause.

class CLASS_NAME
creation

-- list of creation procedures
feature

-- list of attributes and methods
invariant

-- boolean expressions of class invariant
end

The creation procedures cannot assume that the invariant is true when it is called, though the creation
procedure must establish the invariant.

Here is an example of a class invariant for aBANK_ACCOUNTclass.

class BANK_ACCOUNT feature
balance : INTEGER
-- features here

invariant
balance >= 0

end -- BANK_ACCOUNT

6 Inheritance

Inheritance has been discussed in lecture and in your textbook. Eiffel supports both single and multiple
inheritance. We discuss single inheritance here, and leave multiple inheritance to the references. Each class
may contain an inheritance clause, as follows.

class CNAME
inherit

-- list of classes from which CNAME inherits
creation

-- creation procedure names
feature

-- features and attributes
invariant

-- class invariant
end

The inherit clause may contain arbitrarily many names of other classes.
ClassCNAMEacquires all features from the classes from which it inherits (attributes and methods). All

invariants of the parent classes are taken over by the child class (they areanded to the new invariant of

8

the child class). The export policy of features in parent classes are inherited by child classes. This can be
overridden using theexport clause.

6.1 Renaming and redefining

The full form of theinherit clause is somewhat more complicated than we have shown here. The child class
mayrenamefeatures from a parent class, and mayredefinefeatures from a parent class. Renaming is useful
in avoiding name clashes (which can arise in multiple inheritance), and if you want a new name for a feature
in a child class. Redefining is useful if a feature in a parent class doesn’t quite do what is required for a child
class.

Here is an example of redefinition. Suppose we have a classEMPLOYEEwith featuremonths_pay .
We want to create a classSECRETARY, inheriting fromEMPLOYEE, but with a different definition of the
featuremonths_pay .

class SECRETARY
inherit

EMPLOYEE
redefine months_pay end

creation make
feature

hours_worked : REAL
hourly_wage : REAL

months_pay : REAL is
do

result := hourly_wage * hours_worked
end

-- more here
end SECRETARY

A salesperson might be paid according to a different scheme.

class SALESPERSON
inherit

EMPLOYEE
redefine months_pay end

creation make
feature

salary, bonus : REAL

months_pay : REAL is
do

result := salary + bonus
end

-- more here
end

9

The methodmonths_pay in classEMPLOYEEis redefined in the child classes.
Renaming of features is done in a similar fashion. An example of a rename clause (omitting the enclosing

class details) looks like the following.

inherit
GRAPH

rename
add_vertex as add_class,
add_edge as add_relation,
...

The nameadd_vertex in classGRAPHis renamed toadd_class in the child class. The parent class is
unchanged.

7 Type Conformance

Recall that the assignmentx:=y is only permitted when the type ofy conforms to the type ofx . We can
now define what type conformance means. First, we define two terms:

� a classA is anancestorof classB if A andB are the same class, orA is an ancestor of a parent ofB.

� a classB is adescendentof classA if A is an ancestor ofB.

ClassB conforms to classA if and only if B is a descendent ofA.

8 Generic Classes

A generic class is one that is parameterized by a type. An example is the standard Eiffel classARRAY. It is
parameterized by the abstract typeG. The array can hold elements of typeG. We write this as

ARRAY[G]

We can use the generic class to declare arrays of different types. To declare an array of integers, we write

x : ARRAY[INTEGER]

i.e., we fill in the generic typeGwith the embedded typeINTEGER. To declare an array of arrays of reals,
we write

y : ARRAY[ARRAY[REAL]]

Other standard generic classes include:SET, STACK, QUEUE, LIST, SEQUENCE, and so on.
You can write your own generic classes. For example, you can write a genericNODEclass as follows.

class NODE[G]
feature

item : G
next : NODE[G]

set_item(x:G) is
do item := x end

10

set_next(n:NODE[G]) is
do next := n end

end

The class is parameterized by the abstract typeG; nodes hold elements of typeG. Instead of using a concrete
type (like INTEGER) throughout the implementation ofNODE, you useG. The class can be instantiated like
ARRAY, above.

n : NODE[INTEGER]

References

[1] B. Meyer.Object-oriented Software Construction, Second Edition, Prentice-Hall, 1997.

[2] R. Rist and R. Terwilliger.Object-Oriented Programming in Eiffel,Prentice-Hall, 1995.

[3] R. Switzer.Eiffel: An Introduction,Prentice-Hall, 1993.

[4] P. Thomas and R. Weedon.Object-Oriented Programming in Eiffel,Second Edition, Addison-
Wesley, 1998.

11

