
Eiffel, a pure OO language with
support for Design by Contract

From the perspective of a PHP programmer

by Berend de Boer

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Hello World

1 class HELLO_WORLD

2 creation

3 make

4 feature -- Initialization

5 make is
6 do
7 print ("hello world")
8 end

9 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

History

1. 1985: Bertrand Meyer and Jean Marc Nerson begin with the development of a
new, original programming language: Eiffel.

2. 1986: first Eiffel compiler.

3. 1991: Description of the language with the publication of “Eiffel the language”
(ETL2) by Bertrand Meyer (Prentice Hall).

4. First version ofSmartEiffel .

5. 1997: Publication of Object-Oriented Software Construction (OOSC2) by Bertrand
Meyer.

6. 1997: first release of Gobo Eiffel Project.

7. 1997: NICE, the Eiffel Consortium, organises firstEiffel Struggle (six held
since). Prises are awarded for Eiffel applications and Eiffel libraries.

8. 2005: Publication of theEiffel ECMA standard : ECMA 367.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

http://smarteiffel.loria.fr/
http://www.eiffel-nice.org/eiffelstruggle/index.html
http://www.eiffel-nice.org/eiffelstruggle/index.html
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm

PHP and Eiffel

The words object and class have the same meaning in Eiffel and PHP literature.

In the next couple of slides I compare PHP’s object-oriented facilities with Eiffel. I
focus mainly on the similarities. After that I’ll return to how Eiffel is different.

Examples should be familiar, they’re taken from O’Reilly’s Programming PHP book.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Creating an object

$rasmus = new Person;

It’s a convention in Eiffel to use uppercase class names.

1 local
2 erasmus: PERSON;
3 do
4 create erasmus
5 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Accessing features

Eiffel calls properties attributes and methods routines. Or just features to mean both
of them.

echo $rasmus - >age;
echo $rasmus - >birthday () ;
echo $rasmus::TYPE_CREDITCARD;

Eiffel does not distinguish between accessing a property or calling a method.

1 demonstrateis
2 do
3 print (erasmus.age)
4 print (erasmus.birthday)
5 print (erasmus.type_creditcard)
6 end

In PHP internal details bleed through to the caller (the client in Eiffel lingo). It
violates Eiffel’s Uniform Access Principle:

“All services offered by a module should be available through a uniform no-
tation, which does not betray whether they are implemented through storage
or through computation.”

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Declaring a class

class Person {
var $age;
const TYPE_CREDITCARD = 0;

function birthday () {
...

}
}

1 class PERSON

2 feature -- Access

3 age: INTEGER
4 type_creditcard: INTEGER is 0

5 birthday: DATE is
6 do
7 ...
8 end

9 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Public and private

Most languages have mechanisms to influence visibility (accessibility) of features
(properties and methods).

They need those because they don’t have Design by Contract, in particular class
invariants. They are there so you can not screw up. And they usually cast a class on
stone, so you can access nor change the class (Delphi/C#).

Eiffel uses visibility for entirely different reasons: to provide a clean interface to the
client and not clutter the visible interface with internal routines.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

class Person {
public $username = ’ Anyone can see me ’ ;
protected $rowId = 0;
private $hidden = true;

}

1 class PERSON

2 feature { ANY}

3 username: STRINGis "Anyone can see me"

4 feature { PERSON}

5 row_id: INTEGER is 0

6 feature { NONE}

7 hidden: BOOLEAN is true

8 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Static and final

class Person {
static $global = 23;
final function get_name () {

...
}

}

Eiffel does not have the concept of static variables. But you can declare methods as
final (frozen in Eiffel lingo).

1 class PERSON

2 feature

3 frozen get_name: STRINGis
4 do
5 ...
6 end

7 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Abstract methods

abstract class Component {
abstract function printOutput ()

}

1 deferred classCOMPONONENT

2 feature

3 print_output is
4 deferred
5 end

6 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Inheritance

class Employee extends Person {
}

1 class EMPLOYEE

2 inherit

3 PERSON

4 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Interfaces

interface Printable {
function printOutput () ;

}

class ImageComponent implements Printable {
function printOutput () {

...
}

}

Eiffel does not have the interface concept. Interfaces are a poor man’s concept of
multiple inheritance, and Eiffel implements full multiple inheritance. Instead you
can use deferred classes and deferred methods. And give default implementations if
you so wish.

1 deferred classPRINTABLE

2 function print_outputis
3 deferred
4 end

5 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

6 class IMAGE_COMPONENT

7 inherit

8 PRINTABLE

9 feature

10 print_output is
11 do
12 ...
13 end

14 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Constructors

class Employee extends Person {
function __construct ($name, $age, $salary) {

$this - >Person ($name, age)
$this - >salary = $salary;

}
}

1 class EMPLOYEE

2 inherit

3 PERSON
4 redefine
5 makeas make_person
6 end

7 creation

8 make

9 feature { NONE} -- Initialisation

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

10 make (a_name: STRING; an_age: INTEGER; a_salary: DOUBLE) is
11 do
12 make_person(a_name, an_age)
13 salary := a_salary
14 end

15 feature -- Access

16 salary: DOUBLE

17 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Destructors

class Building {
function __destructor () {

...
}

}

Like PHP, destructors in Eiffel are only called at the end of the life of an object. And
it happens automatically.

1 class BUILDING

2 inherit
3 MEMORY
4 redefine
5 dispose
6 end

7 feature { NONE} -- Dispose

8 disposeis
9 do

10 ...

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

11 precursor
12 end

13 end

Precursor is the keyword to call the override feature, the method of the parent (an-
cestor) class.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Other

Introspection and reflection: can be achieved somewhat with tuples and agents.
There is also a separate library:http://se.ethz.ch/people/leitner
/erl_g/

Serialisation: depending on compiler, for example Eiffel Studio can serialise to text
files and object-oriented or relational databases.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/
http://se.ethz.ch/people/leitner/erl_g/

Language goal

From ETL2:

“Eiffel embodies a “certain idea” of software construction: the belief that it
is possible to treat this task as a serious engineering enterprise: : : Such aims
lead to anew cultureof software development: : : Eiffel is nothing else than
these principles taken to their full consequences. In particular, the engineer-
ing of quality software components requires an appropriate notation: : : ”

Principles (for full set see OOSC2):

� Eiffel is a language of least surprise: when more than one interpretation is pos-
sible, it asks. It does not just declare a variable if you have made a typo (static
typing).

� Software written in Eiffel is open and closed: it is open for extension, and it is
closed in the sense that it is available for use by other modules.

� Command-query separation: functions should not produce abstract side effects.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Features

1. Compiled language, uses C as its portable assembly language. Also compiles to
other back-ends as machine code, .NET, or Java Virtual Machine.

2. Automatic garbage collection.

3. Pure Object-Oriented: everything is an object.

4. Static typing.

5. Genericity: write data structures only once.

6. Multiple inheritance.

7. Design by Contract built-in.

8. Tuples and agents.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Pure OO

string.count instead of count(string).

$s = " hello world " ;
echo strlen ($s) ;

1 class EXAMPLE

2 creation make

3 feature

4 make is
5 local
6 s: STRING
7 do
8 s := "hello world"
9 print (s.count)

10 end

11 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Operations (functions) always operate on objects. This has an important influence
on discoverability: what operations are applicable on my object?

Is the strlen operator applicable on numbers? Arrays?

$s = 10;
echo strlen ($s) ;

But Eiffel does not compile this:

1 make is
2 local
3 s: INTEGER
4 do
5 s := 10
6 print (s.count)
7 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Static typing

Eiffel is statically and strongly typed. PHP is dynamically and weakly typed. If you
made a typo in your PHP variable, it just gets declared. In Eiffel you cannot make
such typos.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Genericity

1 class STACK [G]

2 feature -- Access

3 top: G

4 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Multiple inheritance

1 class RADIO_ALARM

2 inherit

3 RADIO

4 ALARM

5 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Design by Contract

Other languages depend on tools to do Design by Contract (DbC). In Eiffel it is built
into the language.

It is important. For the Ariadne 5 rocket the decision was made to reuse software
from Ariadne 4. However the conditions when this piece of software could be reused
was buried in an obscure document. Eiffel programmers put the contracts right there
where they belong: in the code.

Bertrand Meyer: Reuse without a contract is sheer folly!

“From CORBA to C++ to Visual Basic to ActiveX to Java, the hype is on soft-
ware components. The Ariane 5 blunder shows clearly that naïve hopes are
doomed to produce results far worse than a traditional, reuse-less software
process. To attempt to reuse software without Eiffel-like assertions is to in-
vite failures of potentially disastrous consequences. The next time around,
will it only be an empty payload, however expensive, or will it be human
lives?”

See his article on the topic:http://archive.eiffel.com/doc/manuals
/technology/contract/ariane/page.html

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

Pseudo DbC

Most languages have an assert facility. PHP has that as well.

class Person {

function Person ($name, $age) {
assert ($age >= 0) ;
$this - >name = $name;
$this - >age = $age;

}
}

This guarantees that you cannot create a Person with a negative age. But that’s also
where the guarantee stops.

$rasmus = new Person;
$rasmus - >age = - 1;

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Class invariants

With Eiffel you can put the guarantee right there were it belongs, in the class itself:

1 class PERSON

2 feature

3 age: INTEGER

4 invariant

5 age_not_negative: age >= 0

6 end

You cannot violate this invariant without triggering an exception.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Preconditions

Preconditions are an obligation put upon the caller: the caller has to make sure it
fulfils them.

1 class PERSON

2 creation

3 make

4 feature

5 make is (an_age: INTEGER) is
6 require
7 age_not_negative: an_age>= 0
8 do
9 age := an_age

10 end

11 feature

12 age: INTEGER

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

13 invariant

14 age_not_negative: age >= 0

15 end

Non-Redundancy principle: under no circumstances shall the body of a routine ever
test for the routine’s precondition.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Postconditions

Postconditions are a promise by the called routine: if you fulfil the precondition,
this is what I shall do for you.

1 class PERSON

2 feature

3 age: INTEGER

4 set_age(an_age: INTEGER) is
5 require
6 age_not_negative: an_age>= 0
7 do
8 age := an_age
9 ensure

10 age_set: age = an_age
11 end

12 invariant
13 age_not_negative: age >= 0

14 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

DbC is fully integrated with inheritance

Class contracts are inherited, as well as the pre-- and postconditions for redefined
features.

1 class EMPLOYEE

2 inherit
3 PERSON
4 redefine
5 set_age
6 end

7 feature

8 set_age(an_age: INTEGER) is
9 do

10 precursor (an_age)
11 ...
12 end

13 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Correctness formula

f P g A f Q g

Meaning:

“Any execution ofA, starting in a state whereP holds, will terminate in a
state whereQ holds.”

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Loop (in)variants

Does your loop terminate?

1 local
2 i: INTEGER
3 code: INTEGER
4 do
5 from
6 i := 1
7 variant
8 2 + (s.count - i)
9 until

10 i > s.count
11 loop
12 code := s.item_code(i)
13 ...
14 end
15 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

DbC checking

In Eiffel you have the option to compile an application with:

1. No contract checking at all.

2. Only certain kind of contracts enabled, for example only the preconditions.

3. Contracts only enabled for certain classes.

4. Contracts only enabled for certain features.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

DbC benefits

1. Help in writing correct software.

2. Documentation aid.

3. Support for testing, debugging and quality assurance.

4. Support for software fault tolerance.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Web apps

Whatever way you want: ASP.NET, CGI, FastCGI, built-in web server with servlets.

1 class HTML_PAGE

2 inherit EPX_CGI

3 feature
4 executeis
5 do
6 content_text_html
7 doctype
8 b_html
9 b_head

10 title ("Convert Xplain to SQL")
11 e_head
12 b_body
13 -- ...
14 e_body
15 e_html
16 end
17 end

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Demo

Eiffel IDE demonstration: Eiffel Studio.

What:

1. Inheritance overview.

2. Flat and short forms.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

Resources

Well-known libraries:

� Gobo, data structures and much more:http://www.gobosoft.com/

� ecli, ODBC binding:http://sourceforge.net/projects/safe

� eposix, POSIX API binding:http://www.pobox.com/~berend/eposix/

Web sites:

� Eiffel Studio:http://www.eiffel.com/downloads/

� Lots of links:http://www.cetus-links.org/oo_eiffel.html

� Lots of libraries:http://eiffelzone.com/

� EiffelRoom:http://www.eiffelroom.com/

� Eiffel Blog: http://teameiffel.blogspot.com/

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://sourceforge.net/projects/safe
http://sourceforge.net/projects/safe
http://sourceforge.net/projects/safe
http://sourceforge.net/projects/safe
http://sourceforge.net/projects/safe
http://sourceforge.net/projects/safe
http://www.pobox.com/~berend/eposix/
http://www.pobox.com/~berend/eposix/
http://www.pobox.com/~berend/eposix/
http://www.pobox.com/~berend/eposix/
http://www.pobox.com/~berend/eposix/
http://www.pobox.com/~berend/eposix/
http://www.pobox.com/~berend/eposix/
http://www.eiffel.com/downloads/
http://www.eiffel.com/downloads/
http://www.eiffel.com/downloads/
http://www.eiffel.com/downloads/
http://www.eiffel.com/downloads/
http://www.eiffel.com/downloads/
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://www.cetus-links.org/oo_eiffel.html
http://eiffelzone.com/
http://eiffelzone.com/
http://eiffelzone.com/
http://eiffelzone.com/
http://www.eiffelroom.com/
http://www.eiffelroom.com/
http://www.eiffelroom.com/
http://www.eiffelroom.com/
http://www.eiffelroom.com/
http://teameiffel.blogspot.com/
http://teameiffel.blogspot.com/
http://teameiffel.blogspot.com/
http://teameiffel.blogspot.com/
http://teameiffel.blogspot.com/

Conclusion

Eiffel or PHP? It’s more Eiffel and PHP. Each has its place.

I wouldn’t want to write a credit card processing application or an XSLT processor in
PHP. But delivering a content management system without PHP support is likewise
unthinkable.

Hello World

History

PHP and Eiffel

Language goal

Design by
Contract

DbC benefits

Web apps

Demo

Resources

Conclusion

close

