MPFR

The Multiple Precision Floating-Point Reliable Library
Edition 2.0.1

April 2002

The MPFR team, LORIA /INRIA Lorraine

Copyright © 1999-2002 Free Software Foundation

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Foundation.

MPFR Copying Conditions 1

MPFR Copying Conditions

This library is free; this means that everyone is free to use it and free to redistribute it on a free
basis. The library is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of this library that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the library,
that you receive source code or else can get it if you want it, that you can change this library
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these
rights. For example, if you distribute copies of the MPFR library, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the MPFR library. If it is modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for the MPFR library are found in the Lesser General
Public License that accompanies the source code. See the file COPYING.LIB.

2 MPFR 2.0.1

1 Introduction to MPFR

MPFR is a portable library written in C for arbitrary precision arithmetic on reliable floating-
point numbers. It is based on the GNU MP library. It aims to extend the class of floating-point
numbers provided by the GNU MP library by reliable floating-point numbers. It may replace
the GNU MP floating-point numbers in a future release. The main differences with the mpf
class are:

e the mpfr code is portable, i.e. the result of any operation does not depend (or should not)
on the machine word size mp_bits_per_limb (32 or 64 on most machines);

e the precision in bits can be set exactly to any valid value for each variable (including very
small precision);

e mpfr provides the four rounding modes from the IEEE 754 standard.

In particular, with a precision of 53 bits, mpfr should be able to exactly reproduce all compu-
tations with double-precision machine floating-point numbers (double type in C), except the
default exponent range is much wider and subnormal numbers are not implemented.

This version of MPFR is released under the GNU Lesser General Public License. It is permitted
to link MPFR to non-free programs, as long as when distributing them the MPFR source code
and a means to re-link with a modified MPFR is provided.

1.1 How to use this Manual

Everyone should read Chapter 4 [MPFR Basics|, page 5. If you need to install the library
yourself, you need to read Chapter 2 [Installing MPFR], page 3, too.

The rest of the manual can be used for later reference, although it is probably a good idea to
glance through it.

Chapter 2: Installing MPFR 3

2 Installing MPFR

To build MPFR, you first have to install GNU MP (version 4.0.1 or higher) on your computer.
You need a C compiler, preferably GCC, but any reasonable compiler should work. And you
need a standard Unix ‘make’ program, plus some other standard Unix utility programs.

Here are the steps needed to install the library on Unix systems (more details are provided in
the ‘INSTALL’ file):

1.

In most cases, ‘./configure —-with-gmp=/usr/local/gmp’ should work, where the direc-
tory ‘/usr/local/gmp’ is where you have installed GNU MP. When you install GNU MP,
you have to copy the files ‘config.h’, ‘gmp-impl.h’, ‘gmp-mparam.h’ and ‘longlong.h’
from the GNU MP source directory to ‘/usr/local/gmp/include’; these additional files
are needed by MPFR. If you get error messages, you might check that you use the same
compiler and compile options as for GNU MP (see the ‘INSTALL’ file).

‘make’

This will compile MPFR, and create a library archive file ‘1ibmpfr.a’ in the working di-
rectory.

‘make check’

This will make sure MPFR, was built correctly. If you get error messages, please report this
to ‘mpfr@loria.fr’. (See Chapter 3 [Reporting Bugs], page 4, for information on what to
include in useful bug reports.)

‘make install’

This will copy the files ‘mpfr.h’ and ‘mpf2mpfr.h’, and ‘libmpfr.a’, to the directories
‘/usr/local/include’ and ‘/usr/local/1ib’ respectively (or if you passed the ‘--prefix’

option to ‘configure’, to the directory given as argument to ‘--prefix’). This will also
install ‘mpfr.info’ in ‘/usr/local/info’.

There are some other useful make targets:

‘mpfr.dvi’ or ‘dvi’

Create a DVI version of the manual, in ‘mpfr.dvi’.

‘mpfr.ps’

Create a Postscript version of the manual, in ‘mpfr.ps’.

‘clean’

Delete all object files and archive files, but not the configuration files.
‘distclean’

Delete all files not included in the distribution.

‘uninstall’ Delete all files copied by ‘make install’.

2.1 Known Build Problems

MPFR suffers from all bugs from the GNU MP library, plus many many more.

Please report other problems to ‘mpfr@loria.fr’. See Chapter 3 [Reporting Bugs|, page 4.
Some bug fixes are available on the MPFR web page ‘http://www.loria.fr/projets/mpfr/’
or ‘http://www.mpfr.org/’.

4 MPFR 2.0.1

3 Reporting Bugs

If you think you have found a bug in the MPFR library, first have a look on the MPFR web
page ‘http://www.loria.fr/projets/mpfr/’ or ‘http://www.mpfr.org/’: perhaps this bug is
already known, in which case you will find a workaround for it. Otherwise, please investigate
and report it. We have made this library available to you, and it is not to ask too much from
you, to ask you to report the bugs that you find.

There are a few things you should think about when you put your bug report together.

You have to send us a test case that makes it possible for us to reproduce the bug. Include
instructions on how to run the test case.

You also have to explain what is wrong; if you get a crash, or if the results printed are incorrect
and in that case, in what way.

Please include compiler version information in your bug report. This can be extracted using ‘cc
-V’ on some machines, or, if you're using gcc, ‘gcc -v’. Also, include the output from ‘uname
-a’.

If your bug report is good, we will do our best to help you to get a corrected version of the
library; if the bug report is poor, we won’t do anything about it (aside of chiding you to send
better bug reports).

Send your bug report to: ‘mpfr@loria.fr’.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

Chapter 4: MPFR Basics 5

4 MPFR Basics

All declarations needed to use MPFR are collected in the include file ‘mpfr.h’. It is designed
to work with both C and C++ compilers. You should include that file in any program using the
MPFR library:

#include "mpfr.h"

4.1 Nomenclature and Types

Floating-point number or Float for short, is an arbitrary precision mantissa with a limited
precision exponent. The C data type for such objects is mpfr_t. A floating-point number can
have three special values: Not-a-Number (NaN) or plus or minus Infinity. NaN represents a
value which cannot be represented in the floating-point format, like 0 divided by 0, or Infinity
minus Infinity.

The Precision is the number of bits used to represent the mantissa of a floating-point number;
the corresponding C data type is mp_prec_t. The precision can be any integer between MPFR_
PREC_MIN and MPFR_PREC_MAX. In the current implementation, MPFR_PREC_MIN is equal to 2
and MPFR_PREC_MAX is equal to ULONG_MAX.

The rounding mode specifies the way to round the result of a floating-point operation, in case
the exact result can not be represented exactly in the destination mantissa; the corresponding
C data type is mp_rnd_t.

A limb means the part of a multi-precision number that fits in a single word. (We chose this word
because a limb of the human body is analogous to a digit, only larger, and containing several
digits.) Normally a limb contains 32 or 64 bits. The C data type for a limb is mp_limb_t.

4.2 Function Classes

There is only one class of functions in the MPFR library:

1. Functions for floating-point arithmetic, with names beginning with mpfr_. The associated
type is mpfr_t.

4.3 MPFR Variable Conventions

As a general rule, all MPFR functions expect output arguments before input arguments. This
notation is based on an analogy with the assignment operator.

MPEFR allows you to use the same variable for both input and output in the same expression.
For example, the main function for floating-point multiplication, mpfr_mul, can be used like this:
mpfr_mul (x, x, x, rnd_mode). This computes the square of x with rounding mode rnd_mode
and puts the result back in x.

Before you can assign to an MPFR, variable, you need to initialize it by calling one of the special
initialization functions. When you’re done with a variable, you need to clear it out, using one
of the functions for that purpose.

6 MPFR 2.0.1

A variable should only be initialized once, or at least cleared out between each initialization.
After a variable has been initialized, it may be assigned to any number of times.

For efficiency reasons, avoid to initialize and clear out a variable in loops. Instead, initialize it
before entering the loop, and clear it out after the loop has exited.

You don’t need to be concerned about allocating additional space for MPFR variables, since
any variable has a mantissa of fixed size. Hence unless you change its precision, or clear and
reinitialize it, a floating-point variable will have the same allocated space during all its life.

4.4 Compatibility with MPF

A header file ‘mpf2mpfr.h’ is included in the distribution of MPFR, for compatibility with the
GNU MP class MPF. After inserting the following two lines after the #include "gmp.h" line,

#include "mpfr.h"
#include "mpf2mpfr.h"

any program written for MPF can be linked directly with MPFR without any changes. All
operations are then performed with the default MPFR rounding mode, which can be reset with
mpfr_set_default_rounding_mode.

mp_rnd_t __gmp_default_rounding mode Global Variable
The default rounding mode (to nearest initially).

4.5 Getting the Latest Version of MPFR

The latest version of MPFR is available from ‘http://www.loria.fr/projets/mpfr/’ or
‘http://www.mpfr.org/’.

Chapter 5: Floating-point Functions 7

5 Floating-point Functions

The floating-point functions expect arguments of type mpfr_t.

The MPFR floating-point functions have an interface that is similar to the GNU MP integer
functions. The function prefix for floating-point operations is mpfr_.

There is one significant characteristic of floating-point numbers that has motivated a differ-
ence between this function class and other MPFR function classes: the inherent inexactness of
floating-point arithmetic. The user has to specify the precision of each variable. A computation
that assigns a variable will take place with the precision of the assigned variable; the cost of
that computation should not depend from the precision of variables used as input on average.

The precision of a calculation is defined as follows: Compute the requested operation exactly
(with “infinite precision”), and round the result to the destination variable precision with the
given rounding mode. Even if the user has asked for a very high precision, MP will not calculate
with superfluous digits. For example, if two low-precision numbers of nearly equal magnitude
are added, the precision of the result will be limited to what is required to represent the result
accurately.

The MPFR floating-point functions are intended to be a smooth extension of the IEEE P754
arithmetic. The results obtained on one computer should not differ from the results obtained
on a computer with a different word size.

5.1 Rounding Modes

The following four rounding modes are supported:

e GMP_RNDN: round to nearest

e GMP_RNDZ: round towards zero

e GMP_RNDU: round towards plus infinity

e GMP_RNDD: round towards minus infinity

The ‘round to nearest’ mode works as in the IEEE P754 standard: in case the number to be
rounded lies exactly in the middle of two representable numbers, it is rounded to the one with
the least significant bit set to zero. For example, the number 5, which is represented by (101) in
binary, is rounded to (100)=4 with a precision of two bits, and not to (110)=6. This rule avoids
the drift phenomenon mentioned by Knuth in volume 2 of The Art of Computer Programming
(section 4.2.2, pages 221-222).

Most MPFR functions take as first argument the destination variable, as second and following
arguments the input variables, as last argument a rounding mode, and have a return value of
type int. If this value is zero, it means that the value stored in the destination variable is the
exact result of the corresponding mathematical function. If the returned value is positive (resp.
negative), it means the value stored in the destination variable is greater (resp. lower) than
the exact result. For example with the GMP_RNDU rounding mode, the returned value is usually
positive, except when the result is exact, in which case it is zero. In the case of an infinite result,
it is considered as inexact when it was obtained by overflow, and exact otherwise. A NaN result
(Not-a-Number) always corresponds to an inexact return value.

8 MPFR 2.0.1

void mpfr_set_default_rounding_mode (mp_rnd_t rnd) Function
Sets the default rounding mode to rnd. The default rounding mode is to nearest initially.

int mpfr_round_prec (mpfr_t x, mp_rnd_t rnd, mp_prec_t prec) Function

Rounds x according to rnd with precision prec, which may be different from that of x. If
prec is greater or equal to the precision of x, then new space is allocated for the mantissa,
and it is filled with zeroes. Otherwise, the mantissa is rounded to precision prec with
the given direction. In both cases, the precision of x is changed to prec. The returned
value is zero when the result is exact, positive when it is greater than the original value
of x, and negative when it is smaller. The precision prec can be any integer between
MPFR_PREC_MIN and MPFR_PREC_MAX.

void mpfr_set_machine rnd_mode (mp_rnd_t rnd) Function
Set the machine rounding mode to rnd. This function is provided only when the operating
system supports the ISOC9X standard interface for setting rounding modes (i.e. through
the header file <fenv.h>).

char * mpfr_print_rnd_mode (mp_rnd_t rnd) Function
Returns the input string (GMP_RNDD, GMP_RNDU, GMP_RNDN, GMP_RNDZ) cor-
responding to the rounding mode rnd or a null pointer if rnd is an invalid rounding mode.

5.2 Exceptions

Note: Overflow handling is still experimental and currently implemented very partially. If an
overflow occurs internally at the wrong place, anything can happen (crash, wrong results, etc).

mp_exp_t mpfr_get_emin (void) Function
mp_exp_t mpfr_get_emax (void) Function
Return the (current) smallest and largest exponents allowed for a floating-point variable.

int mpfr_set_emin (mp_exp_t exp) Function

int mpfr_set_emax (mp_exp_t exp) Function
Set the smallest and largest exponents allowed for a floating-point variable. Return a
non-zero value when exp is not in the range accepted by the implementation (in that case
the smallest or largest exponent is not changed), and zero otherwise. If the user changes
the exponent range, it is her/his responsibility to check that all current floating-point
variables are in the new allowed range (for example using mpfr_check_range, otherwise
the subsequent behaviour will be undefined, in the sense of the ISO C standard.

int mpfr_check_range (mpfr_t x, mp_rnd_t rad) Function
Return zero if the exponent of x is in the current allowed range (see mpfr_get_emin and
mpfr_get_emax), otherwise reset x according to the current floating-point system and the
rounding mode rnd, and return a positive value if the rounded result is larger than the
original one, a negative value otherwise (the result cannot be exact in that case).

Chapter 5: Floating-point Functions 9

void mpfr_clear_underflow (void) Function
void mpfr_clear_overflow (void) Function
void mpfr_clear_nanflag (void) Function
void mpfr_clear_inexflag (void) Function

Clear the underflow, overflow, invalid, and inexact flags.

void mpfr_clear_flags (void) Function
Clear all global flags (underflow, overflow, inexact, invalid).

int mpfr_underflow_p (void) Function
int mpfr overflow_p (void) Function
int mpfr nanflag p (void) Function
int mpfr_inexflag_p (void) Function

Return the corresponding (underflow, overflow, invalid, inexact) flag, which is non-zero iff
the flag is set.

5.3 Initialization and Assignment Functions

void mpfr_set_default_prec (mp_prec_t prec) Function
Set the default precision to be exactly prec bits. The precision of a variable means the
number of bits used to store its mantissa. All subsequent calls to mpfr_init will use
this precision, but previously initialized variables are unaffected. This default precision
is set to 53 bits initially. The precision can be any integer between MPFR_PREC_MIN and
MPFR_PREC_MAX.

mp_prec_t mpfr_get_default_prec () Function
Returns the default MPFR precision in bits.

An mpfr_t object must be initialized before storing the first value in it. The functions mpfr_init
and mpfr_init2 are used for that purpose.

void mpfr_init (mpfr_t x) Function
Initialize x, and set its value to NaN. Normally, a variable should be initialized once only
or at least be cleared, using mpfr_clear, between initializations. The precision of x is the
default precision, which can be changed by a call to mpfr_set_default_prec.

void mpfr_init2 (mpfr_t x, mp_prec_t prec) Function
Initialize x, set its precision to be exactly prec bits, and set its value to NaN. Normally, a
variable should be initialized once only or at least be cleared, using mpfr_clear, between
initializations. To change the precision of a variable which has already been initialized, use
mpfr_set_prec instead. The precision prec can be any integer between MPFR_PREC_MIN
and MPFR_PREC_MAX.

void mpfr_clear (mpfr_t x) Function
Free the space occupied by x. Make sure to call this function for all mpfr_t variables when
you are done with them.

10 MPFR 2.0.1

Here is an example on how to initialize floating-point variables:

{
mpfr_t x, y;
mpfr_init (x); /* use default precision */
mpfr_init2 (y, 256); /* precision ezactly 256 bits */

/* Unless the program is about to exit, do ... */
mpfr_clear (x);
mpfr_clear (y);

b

The following two functions are useful for changing the precision during a calculation. A typical
use would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

int mpfr_set_prec (mpfr_t x, mp_prec_t prec) Function
Reset the precision of x to be exactly prec bits. The previous value stored in x is lost.
It is equivalent to a call to mpfr_clear(x) followed by a call to mpfr_init2(x, prec),
but more efficient as no allocation is done in case the current allocated space for the
mantissa of x is enough. The precision prec can be any integer between MPFR_PREC_MIN
and MPFR_PREC_MAX. It returns a non-zero value iff the memory allocation failed.

In case you want to keep the previous value stored in x, use mpfr_round_prec instead.

mp_prec_t mpfr_get_prec (mpfr_t x) Function
Return the precision actually used for assignments of x, i.e. the number of bits used to
store its mantissa.

void mpfr_set_prec_raw (mpfr_t x, unsigned long int p) Function
Reset the precision of x to be exactly prec bits. The only difference with mpfr_set_prec
is that p is assumed to be small enough so that the mantissa fits into the current allocated
memory space for x. Otherwise an error will occur.

5.4 Assignment Functions

These functions assign new values to already initialized floats (see Section 5.3 [Initializing Floats],
page 9).

int mpfr_set (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_set_ui (mpfr_t rop, unsigned long int op, mp_rnd_t rnd) Function
int mpfr_set_si (mpfr_t rop, long int op, mp_rnd_t rnd Function
int mpfr_set_d (mpfr_t rop, double op, mp_rnd_t rnd) Function
int mpfr set_z (mpfr_t rop, mpz_t op, mp_rnd_t rnd) Function
int mpfr_set_q (mpfr_t rop, mpq_t op, mp_rnd_t rnd) Function

Set the value of rop from op, rounded to the precision of rop towards the given direction
rnd. Please note that even a long int may have to be rounded, if the destination precision

Chapter 5: Floating-point Functions 11

is less than the machine word width. The return value is zero when rop=op, positive when
rop>op, and negative when rop<op. For mpfr_set_d, be careful that the input number
op may not be exactly representable as a double-precision number (this happens for 0.1
for instance), in which case it is first rounded by the C compiler to a double-precision
number, and then only to a mpfr floating-point number.

int mpfr_set_str (mpfr_t x, char *s, int base, mp_rnd_t rnd) Function
Set x to the value of the string s in base base (between 2 and 36), rounded in direction
rnd to the precision of x. The exponent is read in decimal. This function returns —1 if an
internal overflow occurred (for instance, because the exponent is too large). Otherwise it
returns 0 if the base is valid and if the entire string up to the final '\0’ is a valid number
in base base, and 1 if the input is incorrect.

void mpfr_set_str_raw (mpfr_t x, char xs) Function
Set x to the value of the binary number in string s, which has to be of the form +/-
xxxx.xxxxxxEyy. The exponent is read in decimal, but is interpreted as the power of two
to be multiplied by the mantissa. The mantissa length of s has to be less or equal to
the precision of x, otherwise an error occurs. If s starts with N, it is interpreted as NaN
(Not-a-Number); if it starts with I after the sign, it is interpreted as infinity, with the
corresponding sign.

int mpfr set_f (mpfr_t x, mpf_t y, mp_rnd_t rnd) Function
Set x to the GNU MP floating-point number y, rounded with the rnd mode and the
precision of x. The returned value is zero when x=y, positive when x>y, and negative

when x<y.
void mpfr_set_inf (mpfr_t x, int sign) Function
void mpfr_set_nan (mpfr_t x) Function

Set the variable x to infinity or NaN (Not-a-Number) respectively. In mpfr_set_inf, x is
set to plus infinity iff sign is positive.

void mpfr_swap (mpfr_t x, mpfr_t y) Function
Swap the values x and y efficiently. Warning: the precisions are exchanged too; in case
the precisions are different, mpfr_swap is thus not equivalent to three mpfr_set calls using
a third auxiliary variable.

5.5 Combined Initialization and Assignment Functions

12 MPFR 2.0.1

int mpfr_init_set (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Macro
int mpfr_init_set_ui (mpfr_t rop, unsigned long int op, mp_rnd_t rnd) Macro
int mpfr_init_set_si (mpfr_t rop, signed long int op, mp_rnd_t rnd) Macro
int mpfr_init_set_d (mpfr_t rop, double op, mp_rnd_t rnd) Macro
int mpfr_init_set_f (mpfr_t rop, mpf_t op, mp_rnd_t rnd) Macro
int mpfr_init_set_z (mpfr_t rop, mpz_t op, mp_rnd_t rnd) Macro
int mpfr_init_set_q (mpfr_t rop, mpq_t op, mp_rnd_t rnd) Macro

Initialize rop and set its value from op, rounded to direction rnd. The precision of rop
will be taken from the active default precision, as set by mpfr_set_default_prec. The
return value if zero if rop=op, positive if rop>op, and negative when rop<op.

int mpfr_init_set_str (mpfr_t x, char *s, int base, mp_rnd_t rnd) Function
Initialize x and set its value from the string s in base base, rounded to direction rnd. See
mpfr_set_str.

5.6 Conversion Functions

double mpfr_get_d (mpfr_t op, mp_rnd_t rnd) Function
Convert op to a double, using the rounding mode rnd.

double mpfr_get_dl (mpfr_t op) Function
Convert op to a double, using the default MPFR rounding mode (see function mpfr_set_
default_rounding_mode).

mp_exp_t mpfr_get_z_exp (mpz_t z, mpfr_t op) Function
Puts the mantissa of op into z, and returns the exponent exp such that op equals z
multiplied by two exponent exp.

char * mpfr_get_str (char *str, mp_exp_t *expptr, int base, size_t Function
n_digits, mpfr_t op, mp_rnd_t rnd)
Convert op to a string of digits in base base, with rounding in direction rnd. The base
may vary from 2 to 36. Generate exactly n_digits significant digits.

If n_digits is 0, it writes the maximum possible number of digits giving an exact rounding
in the given base base with the direction rnd. In other words, if op was the exact rounding
of a real number in direction rnd, then the written value is also an exact rounding in base
base of that real number with the same precision. An error occurs when one is unable to
determine the leading digit, which can happen especially if the precision of op is small.

If str is a null pointer, space for the mantissa is allocated using the default allocation
function, and a pointer to the string is returned. In that case, the user should her/himself
free the corresponding memory with (*_mp_free_func) (s, strlen(s) + 1).

If str is not a null pointer, it should point to a block of storage large enough for the
mantissa, i.e., n_digits + 2 or more. The extra two bytes are for a possible minus sign, and
for the terminating null character.

If the input number is a real number, the exponent is written through the pointer expptr
(the current minimal exponent for 0).

Chapter 5: Floating-point Functions

13

If n_digits is 0, note that the space requirements for str in this case will be impossible
for the user to predetermine. Therefore, one needs to pass a null pointer for the string

argument whenever n_digits is 0.

The generated string is a fraction, with an implicit radix point immediately to the left
of the first digit. For example, the number 3.1416 would be returned as "31416" in the

string and 1 written at expptr.

A pointer to the string is returned, unless there is an error, in which case a null pointer is

returned.

5.7 Basic Arithmetic Functions

int
int

int
int

int
int

int

int
int

int
int
int
int

mpfr_add (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd)

mpfr_add_ui (mpfr_t rop, mpfr_t opl, unsigned long int op2,
mp_rnd_t rnd)

mpfr_add_z (mpfr_t rop, mpfr_t opl, mpz_t op2, mp_rnd_t rnd)

mpfr_add_q (mpfr_t rop, mpfr_t opl, mpq_t op2, mp_rnd_t rnd)

Function
Function

Function
Function

Set rop to opl + op2 rounded in the direction rnd. The return value is zero if rop is
exactly opl + op2, positive if rop is larger than opl + op2, and negative if rop is smaller

than opl + op2.

mpfr_sub (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd)

mpfr_ui_sub (mpfr_t rop, unsigned long int opl, mpfr_t op2,
mp_rnd_t rnd)

mpfr_sub_ui (mpfr_t rop, mpfr_t opl, unsigned long int op2,
mp_rnd_t rnd)

mpfr_sub_z (mpfr_t rop, mpfr_t opl, mpz_t op2, mp_rnd_t rnd)

mpfr_sub_q (mpfr_t rop, mpfr_t opl, mpq_t op2, mp_rnd_t rnd)

Function
Function

Function

Function
Function

Set rop to opl — op2 rounded in the direction rnd. The return value is zero if rop is
exactly opl — op2, positive if rop is larger than opl — op2, and negative if rop is smaller

than opl — op2.

mpfr_ mul (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd)

mpfr_mul ui (mpfr_t rop, mpfr_t opl, unsigned long int op2,
mp_rnd_t rnd)

mpfr_ mul z (mpfr_t rop, mpfr_t opl, mpz_t op2, mp_rnd_t rnd)

mpfr_ mul q (mpfr_t rop, mpfr_t opl, mpq_t op2, mp_rnd_t rnd)

Function
Function

Function
Function

Set rop to opl x op2 rounded in the direction rnd. Return 0 if the result is exact, a

positive value if rop > opl X op2, a negative value otherwise.

14

int
int

int

int
int

int

int

int

int

int

int

int

int

int

MPFR 2.0.1
mpfr_div (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd) Function
mpfr_ui_div (mpfr_t rop, unsigned long int opl, mpfr_t op2, Function

mp_rnd_t rnd)
mpfr_div_ui (mpfr_t rop, mpfr_t opl, unsigned long int op2, Function
mp_rnd_t rnd)
mpfr_div_z (mpfr_t rop, mpfr_t opl, mpz_t op2, mp_rnd_t rnd) Function
mpfr_div_q (mpfr_t rop, mpfr_t opl, mpq_t op2, mp_rnd_t rnd) Function

Set rop to opl/op2 rounded in the direction rnd. These functions return 0 if the division
is exact, a positive value when rop is larger than opl divided by op2, and a negative value
otherwise.

mpfr_sqrt (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
mpfr_sqrt_ui (mpfr_t rop, unsigned long int op, mp_rnd_t rnd) Function
Set rop to y/op rounded in the direction rnd. Set rop to NaN if op is negative. Return 0
if the operation is exact, a non-zero value otherwise.

mpfr_pow_ui (mpfr_t rop, mpfr_t opl, unsigned long int op2, Function
mp_rnd_t rnd)
mpfr_ui_pow_ui (mpfr_t rop, unsigned long int opl, unsigned Function

long int op2, mp_rnd_t rnd)
Set rop to opl raised to op2. The computation is done by binary exponentiation. Return
0 if the result is exact, a non-zero value otherwise (but the sign of the return value has no
meaning).

mpfr_ui_pow (mpfr_t rop, unsigned long int opl, mpfr_t op2, Function
mp_rnd_t rnd)
Set rop to opl raised to op2, rounded to the direction rnd with the precision of rop.
Return zero iff the result is exact, a positive value when the result is greater than opl to
the power op2, and a negative value when it is smaller.

mpfr_pow_si (mpfr_t rop, mpfr_t opl, long int op2, mp_rnd_t rnd) Function
Set rop to opl raised to the power op2, rounded to the direction rnd with the precision
of rop. Return zero iff the result is exact.

mpfr_pow (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd) Function
Set rop to opl raised to the power op2, rounded to the direction rnd with the precision
of rop. If op1 is negative then rop is set to NaN, even if op2 is an integer. Return zero iff
the result is exact.

mpfr_neg (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to —op rounded in the direction rnd. Just changes the sign if rop and op are the
same variable.

mpfr_abs (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the absolute value of op, rounded in the direction rnd. Return 0 if the result is
exact, a positive value if rop is larger than the absolute value of op, and a negative value
otherwise.

Chapter 5: Floating-point Functions 15

int
int

int

int
int

int

5.8

int
int
int

int

int

int

int

int

mpfr_mul 2exp (mpfr_t rop, mpfr_t opl, unsigned long int op2, Function
mp_rnd_t rnd)

mpfr_mul 2ui (mpfr_t rop, mpfr_t opl, unsigned long int op2, Function
mp_rnd_t rnd)

mpfr_mul 2si (mpfr_t rop, mpfr_t opl, long int op2, mp_rnd_t Function
rnd)

Set rop to opl x2°7? rounded to the direction rnd. Just increases the exponent by op2 when
rop and opl are identical. Return zero when rop=opl, a positive value when rop>opl,
and a negative value when rop<opl. Note: The mpfr_mul_2exp function is defined for
compatibility reasons; you should use mpfr_mul_2ui (or mpfr_mul_2si) instead.

mpfr_div_2exp (mpfr_t rop, mpfr_t opl, unsigned long int op2, Function
mp_rnd_t rnd)

mpfr_div_2ui (mpfr_t rop, mpfr_t opl, unsigned long int op2, Function
mp_rnd_t rnd)

mpfr_div_2si (mpfr_t rop, mpfr_t opl, long int op2, mp_rnd_t rnd) Function

Set rop to op1/2°P? rounded to the direction rnd. Just decreases the exponent by op2 when
rop and opl are identical. Return zero when rop=opl, a positive value when rop>opl,
and a negative value when rop<opl. Note: The mpfr_div_2exp function is defined for
compatibility reasons; you should use mpfr_div_2ui (or mpfr_div_2si) instead.

Comparison Functions

mpfr_cmp (mpfr_t opl, mpfr_t op2) Function
mpfr_cmp_ui (mpfr_t opl, unsigned long int op2) Function
mpfr_cmp_si (mpfr_t opl, signed long int o0p2) Function

Compare opl and op2. Return a positive value if opl > op2, zero if opl = op2, and a
negative value if opl < op2. Both opl and op2 are considered to their full own precision,
which may differ. In case opl and op2 are of same sign but different, the absolute value
returned is one plus the absolute difference of their exponents. It is not allowed that one
of the operands is NaN (Not-a-Number).

mpfr_cmp_ui_2exp (mpfr_t opl, unsigned long int op2, int e) Function
mpfr_cmp_si_2exp (mpfr_t opl, long int op2, int e) Function
Compare opl and op2 multiplied by two to the power e.

mpfr_eq (mpfr_t opl, mpfr_t op2, unsigned long int op3) Function
Return non-zero if the first op3 bits of opl and op2 are equal, zero otherwise. L.e., tests
if opl and op2 are approximately equal.

mpfr_nan_p (mpfr_t op) Function
Return non-zero if op is Not-a-Number (NaN), zero otherwise.

mpfr_inf p (mpfr_t op) Function
Return non-zero if op is plus or minus infinity, zero otherwise.

16 MPFR 2.0.1

int mpfr_number_p (mpfr_t op) Function
Return non-zero if op is an ordinary number, i.e. neither Not-a-Number nor plus or minus
infinity.

void mpfr_reldiff (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd) Function

Compute the relative difference between opl and op2 and store the result in rop. This
function does not guarantee the exact rounding on the relative difference; it just computes
abs(opl—op2)/opl, using the rounding mode rnd for all operations.

int mpfr_sgn (mpfr_t op) Function
Return a positive value if op > 0, zero if op = 0, and a negative value if op < 0. Its result
is not specified when op is NaN (Not-a-Number).

5.9 Special Functions

int mpfr_log (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the natural logarithm of op, rounded to the direction rnd with the precision
of rop. Return zero when the result is exact (this occurs in fact only when op is 0, 1, or
+infinity) and a non-zero value otherwise (except for rounding to nearest, the sign of the
return value is that of rop-log(op).

int mpfr_exp (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the exponential of op, rounded to the direction rnd with the precision of rop.
Return zero when the result is exact (this occurs in fact only when op is -infinity, 0, or
+infinity), a positive value when the result is greater than the exponential of op, and a
negative value when it is smaller.

int mpfr_exp2 (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to 2 power of op, rounded to the direction rnd with the precision of rop. Return
zero iff the result is exact (this occurs in fact only when op is -infinity, 0, or +infinity), a
positive value when the result is greater than the exponential of op, and a negative value
when it is smaller.

int mpfr_cos (mpfr_t cop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_sin (mpfr_t sop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_tan (mpfr_t top, mpfr_t op, mp_rnd_t rnd) Function

Set cop to the cosine of op, sop to the sine of op, top to the tangent of op, rounded to the
direction rnd with the precision of rop. Return 0 iff the result is exact (this occurs in fact
only when op is 0 i.e. the sine is 0, the cosine is 1, and the tangent is 0).

int mpfr_sin_cos (mpfr_t sop, mpfr_t cop, mpfr_t op, mp_rnd_t rnd) Function
Set simultaneously sop to the sine of op and cop to the cosine of op, rounded to the
direction rnd with their corresponding precisions. Return 0 iff both results are exact.

Chapter 5: Floating-point Functions 17

int mpfr_acos (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_asin (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_atan (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the arc-cosine, arc-sine or arc-tangent of op, rounded to the direction rnd with
the precision of rop. Return 0 iff the result is exact.
int mpfr_cosh (mpfr_t cop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_sinh (mpfr_t sop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_tanh (mpfr_t top, mpfr_t op, mp_rnd_t rnd) Function
Set cop to the hyperbolic cosine of op, sop to the hyperbolic sine of op, top to the
hyperbolic tangent of op, rounded to the direction rnd with the precision of rop. Return
0 iff the result is exact (this occurs in fact only when op is 0 i.e. the result is 1).
int mpfr_acosh (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_asinh (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_atanh (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the inverse hyperbolic cosine, sine or tangent of op, rounded to the direction
rnd with the precision of rop. Return 0 iff the result is exact.
int mpfr_fac_ui (mpfr_t rop, unsigned long int op, mp_rnd_t rnd) Function
Set rop to the factorial of the unsigned long int op, rounded to the direction rnd with the
precision of rop. Return 0 iff the result is exact.
int mpfr_loglp (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the logarithm of one plus op, rounded to the direction rnd with the precision
of rop. Return 0 iff the result is exact (this occurs in fact only when op is 0 i.e. the result
is 0).
int mpfr_expml (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the exponential of op minus one, rounded to the direction rnd with the precision
of rop. Return 0 iff the result is exact (this occurs in fact only when op is 0 i.e. the result
is 0).
int mpfr_log2 (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_logl0 (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
Set rop to the log[t] (t=2 or 10)(log x / log t) of op, rounded to the direction rnd with
the precision of rop. Return 0 iff the result is exact (this occurs in fact only when op is 1
i.e. the result is 0).
int mpfr_ fma (mpfr_t rop, mpfr_t opx,mpfr_t opy,mpfr_t opz, Function
mp_rnd_t rnd)
Set rop to opx * opy + opz, rounded to the direction rnd with the precision of rop. Return
0 iff the result is exact, a positive value if rop is larger than opx * opy + opz, and a negative
value otherwise.
void mpfr_agm (mpfr_t rop, mpfr_t opl, mpfr_t op2, mp_rnd_t rnd) Function

Set rop to the arithmetic-geometric mean of opl and op2, rounded to the direction rnd
with the precision of rop.

18 MPFR 2.0.1

void mpfr_const_log2 (mpfr_t rop, mp_rnd_t rnd) Function
Set rop to the logarithm of 2 rounded to the direction rnd with the precision of rop.
This function stores the computed value to avoid another calculation if a lower or equal
precision is requested.

void mpfr_const_pi (mpfr_t rop, mp_rnd_t rnd) Function
Set rop to the value of Pi rounded to the direction rnd with the precision of rop. This
function uses the Borwein, Borwein, Plouffe formula which directly gives the expansion of
Pi in base 16.

void mpfr_const_euler (mpfr_t rop, mp_rnd_t rnd) Function
Set rop to the value of Euler’s constant 0.577... rounded to the direction rnd with the
precision of rop.

5.10 Input and Output Functions

Functions that perform input from a standard input/output stream, and functions that output
to a standard input/output stream. Passing a null pointer for a stream argument to any of these
functions will make them read from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include ‘stdio.h’ before ‘mpfr.h’, since
that will allow ‘mpfr.h’ to define prototypes for these functions.

size_t mpfr_out_str (FILE xstream, int base, size_t n_digits, mpfr_t Function
op, mp_rnd_t rnd)
Output op on stdio stream stream, as a string of digits in base base, rounded to direction
rnd. The base may vary from 2 to 36. Print at most n_digits significant digits, or if
n_digits is 0, the maximum number of digits accurately representable by op.

In addition to the significant digits, a decimal point at the right of the first digit and a
trailing exponent, in the form ‘eNNN’, are printed. If base is greater than 10, ‘@ will be
used instead of ‘e’ as exponent delimiter.

Return the number of bytes written, or if an error occurred, return 0.

size_t mpfr_inp_str (mpfr_t rop, FILE *stream, int base, mp_rnd_t Function
rnd)
Input a string in base base from stdio stream stream, rounded in direction rnd, and put the
read float in rop. The string is of the form ‘MON’ or, if the base is 10 or less, alternatively
‘MeN’ or ‘MEN’. ‘M’ is the mantissa and ‘N’ is the exponent. The mantissa is always in the
specified base. The exponent is in decimal.

The argument base may be in the range 2 to 36.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

Return the number of bytes read, or if an error occurred, return 0.

Chapter 5: Floating-point Functions 19

void mpfr_print_binary (mpfr_t float) Function
Output float on stdout in raw binary format (the exponent is in decimal, yet). The last
bits from the least significant limb which do not belong to the mantissa are printed between
square brackets; they should always be zero.

5.11 Miscellaneous Functions

int mpfr_rint (mpfr_t rop, mpfr_t op, mp_rnd_t rnd) Function
int mpfr_ceil (mpfr_t rop, mpfr_t op) Function
int mpfr_floor (mpfr_t rop, mpfr_t op) Function
int mpfr round (mpfr_t rop, mpfr_t op) Function
int mpfr_trunc (mpfr_t rop, mpfr_t op) Function

Set rop to op rounded to an integer. mpfr_ceil rounds to the next higher representable
integer, mpfr_floor to the next lower, mpfr_round to the nearest representable integer,
rounding halfway cases away from zero, and mpfr_trunc to the representable integer
towards zero. mpfr_rint behaves like one of these four functions, depending on the
rounding mode. The returned value is zero when the result is exact, positive when it is
greater than the original value of op, and negative when it is smaller. More precisely, the
returned value is 0 when op is an integer representable in rop, 1 or —1 when op is an
integer that is not representable in rop, 2 or —2 when op is not an integer.

void mpfr_urandomb (mpfr_t rop, gmp_randstate_t state) Function
Generate a uniformly distributed random float in the interval 0 <= X < 1.

void mpfr_random (mpfr_t rop) Function
Generate a uniformly distributed random float in the interval 0 <= X < 1.

void mpfr_random2 (mpfr_t rop, mp_size_t max size, mp_exp_t Function
max_exp)
Generate a random float of at most max_size limbs, with long strings of zeros and ones
in the binary representation. The exponent of the number is in the interval —exp to exp.
This function is useful for testing functions and algorithms, since this kind of random
numbers have proven to be more likely to trigger corner-case bugs. Negative random
numbers are generated when max_size is negative.

5.12 Internals

These types and functions were mainly designed for the implementation of mpfr, but may be
useful for users too. However no upward compatibility is guaranteed. You need to include
mpfr-impl.h to use them.

The mpfr_t type consists of four fields. The _mpfr_prec field is used to store the precision of
the variable (in bits); this is not less than 2.

The _mpfr_size field is used to store the number of allocated limbs, with the high bits reserved
to store the sign (bit 31), the NaN flag (bit 30), and the Infinity flag (bit 29); thus bits 0 to
28 remain for the number of allocated limbs, with a maximal value of 536870911. A NaN is

20 MPFR 2.0.1

indicated by the NaN flag set, and no other fields are relevant. An Infinity is indicated by the
NaN flag clear and the Inf flag set; the sign bit of an Infinity indicates the sign, the limb data
and the exponent are not relevant.

The _mpfr_exp field stores the exponent. An exponent of 0 means a radix point just above the
most significant limb. Non-zero values are a multiplier 2"n relative to that point.

Finally, the _mpfr_d is a pointer to the limbs, least significant limbs stored first. The number
zero is represented with its most significant limb set to zero, i.e. _mpfr_d[n-1] where n=ceil(_
mpfr_prec/BITS_PER_MP_LIMB). The number of limbs in use is controlled by _mpfr_prec,
namely ceil(_mpfr_prec/BITS_PER_MP_LIMB). Zero is represented by the most significant limb
being zero, other limb data and the exponent are not relevant ("not relevant" implies that the
corresponding objects may contain invalid values, thus should not be evaluated even if they
are not taken into account). Non-zero values always have the most significant bit of the most
significant limb set to 1. When the precision is not a whole number of limbs, the excess bits
at the low end of the data are zero. When the precision has been lowered by mpfr_set_prec,
the space allocated at _mpfr_d remains as given by _mpfr_size, but _mpfr_prec indicates how
much of that space is actually used.

int mpfr_add_one_ulp (mpfr_t x, mp_rnd_t rnd) Function
Add one unit in last place (ulp) to x if x is finite and positive, subtract one ulp if x is finite
and negative; otherwise, x is not changed. The return value is zero unless an overflow
occurs, in which case the mpfr_add_one_ulp function behaves like a conventional addition.

int mpfr_sub_one_ulp (mpfr_t x, mp_rnd_t rnd) Function
Subtract one ulp to x if x is finite and positive, add one ulp if x is finite and negative;
otherwise, x is not changed. The return value is zero unless an underflow occurs, in which
case the mpfr_sub_one_ulp function behaves like a conventional subtraction.

int mpfr_can_round (mpfr_t b, mp_exp_t err, mp_rnd_t rndl, mp_rnd_t Function
rnd2, mp_prec_t prec)
Assuming b is an approximation of an unknown number x in direction rnd1 with error at
most two to the power E(b)-err where E(b) is the exponent of b, returns 1 if one is able
to round exactly x to precision prec with direction rnd2, and 0 otherwise. This function
does not modify its arguments.

Contributors 21

Contributors

The main developers consist of Guillaume Hanrot, Vincent Lefvre and Paul Zimmermann.

We would like to thank Jean-Michel Muller and Joris van der Hoeven for very fruitful discussions
at the beginning of that project, Torbjorn Granlund and Kevin Ryde for their help about design
issues and their suggestions for an easy integration into GNU MP, and Nathalie Revol for her
careful reading of this documentation.

Sylvie Boldo from ENS-Lyon, France, contributed the functions mpfr_agm and mpfr_log. Em-
manuel Jeandel, from ENS-Lyon too, contributed the generic hypergeometric code in generic.c,
as well as the mpfr_exp3, a first implementation of the sine and cosine, and improved versions of
mpfr_const_log2 and mpfr_const_pi. Mathieu Dutour contributed the functions mpfr_atan
and mpfr_asin, David Daney contributed the hyperbolic and inverse hyperbolic functions, the
base-2 exponential, and the factorial function. Fabrice Rouillier contributed the original version
of ‘mul_ui.c’, the ‘gmp_op.c’ file, and helped to the Windows porting.

22 MPFR 2.0.1

References

e Torbjorn Granlund, "GNU MP: The GNU Multiple Precision Arithmetic Library", version
4.0.1, 2001.

e [EEE standard for binary floating-point arithmetic, Technical Report ANSI-IEEE Standard
754-1985, New York, 1985. Approved March 21, 1985: IEEE Standards Board; approved
July 26, 1985: American National Standards Institute, 18 pages.

e Donald E. Knuth, "The Art of Computer Programming", vol 2, "Seminumerical Algo-
rithms", 2nd edition, Addison-Wesley, 1981.

Concept Index

Concept Index

A

Arithmetic functions 13

C

Comparison functions 15
Conditions for copying MPFR.................... 1
Conversion functionsc.ooviiua.. 12
Copying conditions. ..., 1

F

Float arithmetic functions 13
Float assignment functions...................... 10
Float comparisons functions. 15
Float functions.oiiiiiiiinniinnennnn. 7
Float input and output functions................ 18
Floating-point functions 7
Floating-point number........................... 5

I

I/Ofunctions.........oovviiiiiiiiiiinnnniunnn, 18
Initialization and assignment functions........... 11
Input functions L.l 18
Installation oo i i 3

23
L
Limb....... 5
M
Miscellaneous float functions.................... 19
Qpfr. b’ 5
O
Output functions., 18
P
Precision 5
R
Reporting bugs i 4
Rounding Mode............... ..., 5
Rounding modesl 7
Special functionsl 16

U

User-defined precisionccuunaan.. 7

24

Function and Type Index

M

MP_PTEC_t ottt e e e e e e e 5
MP_TNd_t .o 5
mpfr_abs 14
MPFT _ACOS . ¢\t e ettt e 17
mpfr_acosh.t 17
mpFr_add 13
mpfr_add_one_ulpciuiiiiiaaiiiannn.. 20
mpfr_add_q............. ... Ll 13
mpfr_add_ui........... oL 13
mpfr_add_z.............l 13
mpfr_agm......... 17
mpfr_asin........... i 17
mpfr_asinh.........ol 17
mpfr_atan............o 17
mpfr_atanh.........ol 17
mpfr_can_round, 20
mpfr_ceil........ 19
mpfr_check_range 8
mpfr_clear....... ..ot i 9
mpfr_clear_flagsl 9
mpfr_clear_inexflag........................... 9
mpfr_clear_nanflag............................ 9
mpfr_clear_overflow........................... 9
mpfr_clear_underflow.......................... 8
MPEr_CmpP s 15
mpfr_cmp_Si....... ..o 15
mpfr_cmp_Si_2eXpiiiiiiiii i 15
mpfr_cmp_ui........ ... 15
mpfr_cmp_ui_2exXp 15
mpfr_const_euler 18
mpfr_const_log2, 18
mpfr_const_pi.................. il 18
mpfr_CoS. 16
mpfr_cosh........ i 17
mpfr_div....... ... 13
mpfr_div_2exp.......... ... 15
mpfr_div_2si.......... 15
mpfr_div_2ui.............l 15
mpfr div_qg......... ... 14
mpfr div_ui..........l 14
mpfr div_z.......... 14
MPET _€Q . oot ettt 15
1173 i = o S 16
MPET_@XP2 . ..t 16
mpfr_expml 17
mpfr_fac_ui.........l 17
mpfr_floor. 19
mpfr_fma......... 17

MPFR 2.0.1
mpfr_get_dl.............ol 12
mpfr_get_default_prec......................... 9
mpfr_get_emax.................. ..., 8
mpfr_get_emin............l 8
mpfr_get_prec.............l 10
mpfr_get_str............. 12
mpfr_get_zZ_eXp ... 12
mpfr_inexflag p, 9
mpfr_inf p..... 15
mpfr_init.........l 9
mpfr_init_set..............ol 11
mpfr_init_set_d 12
mpfr_init_set_f L 12
mpfr_init_set_ql 12
mpfr_init_set_si oL 12
mpfr_init_set_str................. 12
mpfr_init_set_uil 12
mpfr_init_set_z 12
mpfr_init2.......... 9
mpfr_inp_str............ i, 18
mpfr_log.........l 16
mpfr_loglO.........l 17
MPEr_L1ogIp . .o 17
MPEr_10G2 17
mpfr_mul......... 13
mpfr_mul_2exp.............. ... i 15
mpfr_mul_2si.............. 15
mpfr_mul _2ui..............l 15
mpfr_mul_q............ 13
mpfr_mul_ui....... ...l 13
mpfr_mul_Z............ .. 13
mpfr_nan_p............. i 15
mpfr_nanflag pot 9
mpfr_neg...... ...t 14
mpfr_number_p......... 16
mpfr_out_str..............l 18
mpfr_overflow _pt 9
MPEr_POW. ...\t 14
mpfr_pow_si............ ... il 14
mpfr_pow_ui......... ...l 14
mpfr_print_binary 19
mpfr_print_rnd_mode 8
mpfr_random............. i 19
mpfr_random2.............. 19
mpfr_reldiff.......... Ll 16
mpfr_rint...... 19
MPEr_Toundttt 19
MpEr_Tound_Precooeeiiinnanaeaaaannn 8
mpfr_set....... 10
mpfr_set_d...........l 10

Function and Type Index

mpfr_set_default_prec......................... 9
mpfr_set_default_rounding _mode 7
mpfr_set_emax..............., 8
mpfr_set_emin.............o, 8
mpfr_set_f.......l 11
mpfr_set_inf.........ol 11
mpfr_set_machine_rnd_mode..................... 8
mpfr_set_man................ ... 11
mpfr_set_prec.............l 10
mpfr_set_prec_raw, 10
mpfr_set_q.......... ... 10
mpfr_set_si........l 10
mpfr_set_str.............l 11
mpfr_set_str_raw, 11
mpfr_set_ui............... ... 10
mMpEr_Set_Z....... ... 10
mpfr_sgn............ ... 16
mpfr_sin....... ... 16

25
mpfr_sinh...... L.l 17
mpfr_SqQrt. 14
mpfr_sqrt_ui........ L 14
mpEr_sub 13
mpfr_sub_one_ulpiiiiiiaaaaaa. 20
mpfr_sub_q........... 13
mpfr_sub_ui............ il 13
mpfr_sub_z........... 13
MPEr_SWaAP . ..ottt 11
mpfr_t 5}
mpfr_tan........... 16
mpfr_tanh.........l 17
mpfr_trunc........... i 19
mpfr_ui div............ ... il 14
MPfr Ul _POW. ...t 14
mpfr_ui_pow_uiiiiiii 14
mpfr_ui_sub............ ol 13
mpfr_underflow_p 9
mpfr_urandomb............... 19

26

MPFR 2.0.1

Table of Contents

MPFR Copying Conditions....................... 1
1 Introductionto MPFR.............. ..., 2
1.1 HowtousethisManual............. 2
2 Installing MPFRiii... 3
2.1 Known Build Problemso 3
3 Reporting Bugs.........ooiiiiiiiieiennnnnenss 4
4 MPFR BasSiCS v oo vi ittt eitieett et neeennennnnns 5
4.1 Nomenclature and Types.o, 5
4.2 Function ClassSescovtiii i e 5
4.3 MPFR Variable Conventionsouuiuiuiin .. 5
4.4 Compatibility with MPF 6
4.5 Getting the Latest Version of MPFR........................... 6
5 Floating-point Functions 7
5.1 Rounding Modes 7
5.2 EXCEPIONS oottt 8
5.3 Initialization and Assignment Functions....................... 9
5.4 Assignment Functions 10
5.5 Combined Initialization and Assignment Functions............ 11
5.6 Conversion FUNCHIONS . . .o ot vttt et e e e e eane 12
5.7 Basic Arithmetic Functions, 13
5.8 Comparison Functions oL 15
5.9 Special Functions......... 16
5.10 Input and Output Functions 18
5.11 Miscellaneous Functions ..., 19
5.12 Internals...... ... e 19
Contributorscovii ittt et it i et e 21
Referencescoviiiii it enenenenennns 22

Concept Index........covviiiiiinnrnnnnesnnnnss 23

Function and TypeIndex........................ 24

