
Eiffel SDL multimedia library (ESDL)
3D API

SEMESTER THESIS

Patrick Ruckstuhl

23rd March 2005

http://eiffelsdl.sf.net

Student: Patrick Ruckstuhl (rupatric@student.ethz.ch)

Student-No: 01-917-772

Supervising Assistant: Till G. Bay

Supervising Professor: Bertrand Meyer

1

rupatric@student.ethz.ch

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

Contents

1 Introduction 3

2 Implementation of the 3D API 4
2.1 Overview . 4
2.2 Basic setup . 4
2.3 2D mode. 4

2.3.1 Overview . 4
2.3.2 Details . 4
2.3.3 Important performance informations. 5

2.4 Mipmap textures . 5
2.4.1 Overview . 5
2.4.2 Details . 5

2.5 3D object . 5
2.5.1 3D object container. 5
2.5.2 3D vector. 5

2.6 3D object factory . 6
2.6.1 Overview . 6
2.6.2 Details . 6
2.6.3 Important performance informations. 6
2.6.4 Wavefront obj loader. 6

2.7 Collision detection . 7
2.7.1 Sphere collision. 7
2.7.2 Skybox collision . 7
2.7.3 Further possibilities. 7

2.8 Examples . 7
2.8.1 Hello 3D world. 7
2.8.2 Objects 3D. 7
2.8.3 Racing 3D . 8

A References 8

2

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

1 Introduction

ESDL is a wrapper for SDL, the Simple Directmedia Layer library [3]. SDL is an open
source C library that is very popular among Linux game developers. Besides Linux,
SDL is also available for many other platforms such as Windows and MacOS. SDL
is a very performing multimedia library composed of various subsystems for graphics,
sound, networking, threading, CD-ROM access, window management, joystick han-
dling, event handling and time management. The aim of this project is to provide the
Eiffel community with a wrapper of SDL that has an easy understandable and memo-
rable API, that is as performing as SDL and runs on different platforms. At the moment
Windows, Linux and Mac OSX are supported.

ESDL is being developed subsystem by subsystem. At the moment the library al-
lows only the drawing of 2 dimensional objects on the screen. The goal of this semester
thesis is to extend the library with a binding to openGL that allows to create 3 dimen-
sional objects.

To show the extended functionality an example application will be created. This
example application is a computer game that starts in a 2 dimensional view and then
switches to a 3 dimensional perspective.

3

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

2 Implementation of the 3D API

2.1 Overview

The SDL library does support a binding to openGL and so openGL[2] was used for the
3D API in ESDL.

For the 3D part to work an openGL compatible graphic card and drivers need to be
installed.

The openGL was wrapped using the eiffel wrapper generator [1] and a sed [4]
script.

2.2 Basic setup

To use the 3D mode in esdl the procedure is almost identically to setting up a normal
2D screen. The only thing that is needed is to callset_opengl(true) on the
video_subsystem before thevideo_subsystem is enabled. If some more
specific details about the openGL screen wants to be set this can be done with several
methods (gl_set_*). This methods have also to be called befor the subsystem is
enabled.

See Hello 3D world (2.8.1) for a simple example.

2.3 2D mode

2.3.1 Overview

If the screen surface is in openGL mode normal blitting operations to screen don’t
work anymore. To still be able to use things like fonts the blitting operations were
reimplemented in openGL mode.

First gl_enter_2d needs to be called on the screen surface. This sets up the
projection and other settings that things can be easily drawn with 2D coordinates. After
this, the normal blitting and drawing commands can be called. In this methods there is
a distinction between normal and openGL case and the according implementation will
be called.

2.3.2 Details

The blitting in openGL is implemented with textures. OpenGL only allows textures that
have dimensions that are a power of two. The pixels for the textures also need to be in
a certain format. To get compatible pixel data, a new surface is created withmake_gl
which sets the correct bitmask for the pixels, so that this is compatible with openGL.
The surface will be created with power of two dimensions that are equal or greater than
the size of the current surface. After this, the current surface will be blitted to the newly
create surface. This blitting is only software blitting and hasn’t anything to do with
openGL so the normal blitting operations are used. From this newly created surface an
openGL texture will be created and automatically downloaded into the graphics card
memory. This whole procedure will only be called again if the surface changed (after
blitting something on it or creating a new surface).

At the end a rectangle will be created on the correct position and the texture will be
assigned to it.

4

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

2.3.3 Important performance informations

In some situations the new 2D mode can be a lot faster than the normal 2D mode. To
create fast applications some things need to be taken into considerations. As on every
change of a surface a new texture has to be created and loaded into the video memory
changing a surface is expensive whereas blitting an unchanged surface to a position on
the screen is very cheap. The texture is already on the graphics hardware and only very
little information about the position have to be sent to the graphics card. With this in
mind it is better to minimise the number of changes to a surface. For example if there
is an animation. It makes sense to create a surface for each picture of the animation
instead of changing one surface.

2.4 Mipmap textures

2.4.1 Overview

Textures are used to make objects more realistic. Mipmaping is a technique that results
in better looking results if an object with a texture is on different distance of the camera.
To ease the use of textures agl_texture_mipmap method was added to the surface.
This method allows easy creation of such mipmaps. For example a surface can be
created from an image and then from this a texture mipmap will be created.

2.4.2 Details

This is implemented very similar to the creation of normal textures (2.3.2) but some
things are simpler because there are helper functions in the GL utility library that allow
to create a mipmap texture out of pixel data (that does not need to have dimensions that
are a power of two).

2.5 3D object

An ESDL_3D_OBJECT is the basic building block for 3D scenes. This objects can
be plased on a position, resized and rotated around the three axis through their ori-
gin. They also have a width, height and depth property that specifies their surounding
object bounding box. The bounding box will automatically be updated through the
transformation operations.

2.5.1 3D object container

An ESDL_3D_OBJECT_CONTAINER is a container for several ESDL_3D_OBJECTs
and is itself also such an object. The container can set up a new coordinate system and
all the coordinates of its elements are relative to this coordinate system. At the mo-
ment the computation of the bounding box for the container out of the elements isn’t
supported and the bounding box has to be set manually.

2.5.2 3D vector

The ESDL_3D_VECT class implements some common used vector functionality.

5

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

2.6 3D object factory

2.6.1 Overview

Very often an object will not be used only once but multiple times and maybe even
several different instances of it. To make this easier a object factory is provided.
From which one can inherit to very easily create an own object factory. To do this
inherit from ESDL_3D_OBJECT_FACTORY, specify the with, height and depth of
the bounding box and implement thespecify_object method in this method you
need to draw your object (using normal openGL commands) with the lower, left, front
point in (0/0/0). You then can get your objects with the create_object method.

2.6.2 Details

The object factory is implemented with openGL displaylists. This lists are the com-
piled informations of an object on the video card. The compile method creates such
a list and then calls thespecify_object method where the openGL commands
for drawing the object are and this commands will be inserted into the displaylist by
openGL. For the programmer a displaylist is represented with an integer value. With
this integer value a new object of ESDL_3D_OBJECT_DISPLAYLIST will be called
which implements the draw method as a simple call to the displaylist with the specified
integer value.

2.6.3 Important performance informations

The loading of textures into video memory is a very performance intensive task and
if done in thespecify_object method will be executed on each redraw of the scene. It
is important to load the textures into the video memory before the drawing. In the
most cases this is done in the constructor and the textures are only assigned in the
specify_object method. See the examples Objects 3D (2.8.2) and Racing 3D (2.8.3).

2.6.4 Wavefront obj loader

The ESDL_3D_OBJ_LOADER is an implementation of an ESDL_3D_OBJECT_FACTORY
that allows to import geometric data directly from a file. The Wavefront obj format is
a format that most 3D creation programms provide an export functionality to. The for-
mat is an ASCII file format where each line provides some informations. There are
several different informations that can be in a line. There can be informations about
position, normal and texture coordinates of a vertex and there are lines that describe
which vertex informations make up a face. In addition there is also the possibility to
describe material and texture informations about such faces. At the moment only a
subset of the format is understand by the loader. Only position for vertices is supported
and only faces of three vertices are supported. For the full description of the file format
see [5]. A supported file looks like this

comment
v 2 4 3
v 1 1 1
v 3 2 1
v 1 1 1
v 3 3 3

6

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

v 2 2 2
f 1 2 3
f 4 5 6

When the face data is loaded the face normals are computed by the loader (simple
crossproduct). This allows so called flat shadding in openGL. The loader could be
extended to also compute the vertex normals and with that also allow smoth shadding.

Additionally to loading the data and generating the face normals, the object bound-
ing box for the object is computed to allow collision detection.

2.7 Collision detection

For most uses of 3D graphics also a system for collision detection is needed. As there
already was a basic setup for collision handling in 2D this was extended to handle the
3D case. At the moment the implementation is based on bounding spheres, which is
good enough for most cases. In addition there exists also an implementation based
on infinite axis aligned planes to handle collision with a skybox. For an example see
Racing 3D (2.8.3).

2.7.1 Sphere collision

For an object to be able to be checked against sphere collisions it has to inherit from
ESDL_3D_SPHERE_COLLIDABLE and implement the deferred features. These are
the bounding_sphere_center, the bounding_sphere_radius, on_collide (which gets ex-
ecuted if the object collides) and type_id.

2.7.2 Skybox collision

If a skybox should be collidable it has to inherit from ESDL_3D_SKYBOX_COLLIDABLE
and implement the deferred features. These are mainly the start and end coordinates of
the skybox.

2.7.3 Further possibilities

For an even better handling of collisions an algorithm based on bounding boxes could
be used. The needed information for the objects is already in the 3D_OBJECT. A
possible algorithm could be found at [6].

2.8 Examples

2.8.1 Hello 3D world

This is a simple example that shows the basic setup of a 3D scene. A spinning pyramid
is shown.

2.8.2 Objects 3D

This shows the use of ESDL_3D objects and of ESDL_3D_OBJECT_FACTORY. Three
pyramids are shown. Two of the pyramids have a texture on their bottom.

7

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL 3D API
Patrick Ruckstuhl

2.8.3 Racing 3D

This is a complex example that shows all the different parts that were done.
First comes the menu that takes use of the 2D mode (2.3). After this comes the

scene which consists of a skybox for the background graphics, several buildings and
a car that can be driven around. After some seconds the scene morphes from the 2d
perspective to a 3d perspective. This can also be triggered by pressing the space key.
Around the whole scene is a skybox which is collidable with the car. Also the buildings
are collidable. Over the car is an arrow which points to a target that should be reached.
The target makes use of an openGL technique called environment map to show the
effect of a reflection. When the target is reached, the game has ended and the time to
the target is displayed.

A References

References

[1] Eiffel wrapper generator. URLhttp://ewg.sf.net .

[2] openGL Documentation. URL http://www.opengl.org .

[3] Simple Directmedia Layer Documentation. URL http://www.libsdl.org .

[4] Stream editor. URLhttp://www.student.northpark.edu/pemente/
sed/ .

[5] Wavefront obj. URL http://netghost.narod.ru/gff/graphics/
summary/waveobj.htm .

[6] D. Manocha S. Gottschalk, M.C. Lin. URLftp://ftp.cs.unc.edu/pub/
users/manocha/PAPERS/COLLISION/sig96.pdf .

8

http://ewg.sf.net
http://www.opengl.org
http://www.libsdl.org
http://www.student.northpark.edu/pemente/sed/
http://www.student.northpark.edu/pemente/sed/
http://netghost.narod.ru/gff/graphics/summary/waveobj.htm
http://netghost.narod.ru/gff/graphics/summary/waveobj.htm
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/sig96.pdf
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/sig96.pdf

	Introduction
	Implementation of the 3D API
	Overview
	Basic setup
	2D mode
	Overview
	Details
	Important performance informations

	Mipmap textures
	Overview
	Details

	3D object
	3D object container
	3D vector

	3D object factory
	Overview
	Details
	Important performance informations
	Wavefront obj loader

	Collision detection
	Sphere collision
	Skybox collision
	Further possibilities

	Examples
	Hello 3D world
	Objects 3D
	Racing 3D

	References

