
Eiffel SDL multimedia library (ESDL)

API extensions

SEMESTER THESIS

Benno Baumgartner

30th March 2004

http://eiffelsdl.sf.net

Student: Benno Baumgartner (benno@student.ethz.ch)

Student-No: 98-727-589

Supervising Assistant: Till G. Bay

Supervising Professor: Bertrand Meyer

1

benno@student.ethz.ch

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

Contents

1 Introduction 4

2 Implementation of the Extensions 4
2.1 Overview . 4
2.2 ESDL DRAWABLE . 4
2.3 ESDL SURFACE . 9

2.3.1 Example . 10
2.4 ESDL SPRITE . 10

2.4.1 ESDL ANIMATION . 10
2.4.2 ESDL RANDOM SPRITE 11
2.4.3 Example . 11

2.5 ESDL TILE PATTERN . 11
2.5.1 ESDL TILE PATTERN HORIZONTAL 12
2.5.2 ESDL TILE PATTERN VERTICAL 12
2.5.3 Example . 12

2.6 ESDL NEVER ENDING BACKGROUND 12
2.6.1 ESDL NEVER ENDING BACKGROUND HORIZONTAL 13
2.6.2 ESDL NEVER ENDING BACKGROUND VERTICAL . 13
2.6.3 Example . 14

2.7 ESDL DRAWABLE CONTAINER 14
2.7.1 Example . 15

2.8 ESDL STRING . 16
2.8.1 ESDL CHARACTER . 16
2.8.2 ESDL FONT . 16
2.8.3 ESDL BITMAPFONT . 18
2.8.4 Example . 19

2.9 ESDL FRAME COUNTER . 19
2.9.1 Example . 19

2.10 ESDL TIME . 19
2.10.1 Example . 20
2.10.2 ESDL TIME SINGLETON 20
2.10.3 Callbacks . 21
2.10.4 Example . 21
2.10.5 ESDL MUTEX . 21

2.11 ESDL COLLIDABLE . 21
2.11.1 ESDL RECT COLLIDABLE 22
2.11.2 ESDL COLLISION DETECTOR 23
2.11.3 Example . 23

3 Examples 24
3.1 Bitmap fonts . 24
3.2 Drawable demo . 25
3.3 Never ending background . 27
3.4 Collidable string . 28

2

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

3.5 ESDL Racing . 29

4 Future Work 31

List of Figures

1 ESDL DRAWABLE BON Diagram 8
2 A never ending background . 13
3 A container . 15
5 Bitmap font Arial 256 . 18
4 ESDL FONT BON Diagram . 18
6 Bitmap font example . 24
7 A drawable demo part 1 . 25
8 A drawable demo part 2 . 25
9 A demo of a never ending background 27
10 A demo of collidable strings . 28
11 ESDL Racing level 1 . 29
12 ESDL Racing level 2 . 29
13 ESDL Racing level 3 . 30

3

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

1 Introduction

ESDL is a wrapper for SDL, the Simple Directmedia Layer library [4]. SDL is
an open source C library that is very popular among Linux game developers.
Besides Linux, SDL is also available for many other platforms such as Windows
and MacOS. SDL is a very performing multimedia library composed of vari-
ous subsystems for graphics, sound, networking, threading, CD-ROM access,
window management, joystick handling, event handling and time management.
The aim of this project is to provide the Eiffel community with a wrapper of
SDL that has an easy to understand and memorable API, that is as performing
as SDL is and that runs on different platforms. At the moment Windows and
Linux are supported.

ESDL is being developed subsystem by subsystem. This semester thesis
report describes the implementation of API extensions of ESDL 0.0.1. Among
others I have extended the time subsystem, added extensions to the graphical
subsystem that allows a developer to handle RGB bitmap graphics in a very
flexible and easy way. I also added collision detection support.

These extensions allow to build complex games in a very easy way as the
example application ESDL Racing in subsection 3.5 on page 29 demonstrates.

The graphical subsystem and the event loop are not described in this report
but in the documentation of the first version of ESDL [1].

2 Implementation of the Extensions

2.1 Overview

In subsection 2.2 until 2.9 on page 19 all classes related to ESDL DRAWABLE
are introduced. This classes provide powerful and very flexible functionalities
to work with two dimensional RGB bitmaps in ESDL.

In subsections 2.10 on page 19 until 2.10.5 on page 21 all classes related to the
time subsystem are covered. The time subsystem provides the programmer with
functionalities related to time measurement that is used for all the animation
support.

In subsection 2.11 on page 21 all classes related to collision detection are
explained.

2.2 ESDL DRAWABLE

Every class in ESDL describing an object that can be drawn to an ESDL SURFACE
should implement ESDL DRAWABLE. ESDL DRAWABLE is a deferred class.
It’s main features are draw and draw part :

deferred class
ESDL DRAWABLE

4

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

feature −− commands

draw (a surface: ESDL SURFACE) is
−− Draws ‘current’ to ‘a surface’

require
a surface not void: a surface /= void

deferred
end

draw part (rect: ESDL RECT; a surface: ESDL SURFACE) is
−− Draws rectangular part of ‘current’ defined by ‘rect’ to ‘a surface’

require
a rect not void: rect /= void
a surface not void: a surface /= void

deferred
end

feature −− status

width: INTEGER is
−− The ‘width’ of ‘current’
−− The ‘width’ is the position of the right most pixel

deferred
ensure

Result >= 0
end

height: INTEGER is
−− The ‘height’ of ‘current’
−− The ‘height’ is the position of the bottom most pixel

deferred
ensure

Result >= 0
end

x: INTEGER
−− The distance of ‘current’ to the coordinate origin
−− in ‘x’ (left −> right) direction

set x (an integer: INTEGER) is
−− Sets ‘x’

require

5

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

positive: an integer >= 0
do

x := an integer
ensure

set: x = an integer
end

y: INTEGER
−− The distance of ‘current’ to the coordinate origin
−− in ‘y’ (top −> down) direction

set y (an integer: INTEGER) is
−− Sets ‘y’

require
positive: an integer >= 0

do
y := an integer

ensure
set: y = an integer

end

set x y (an x: INTEGER; an y: INTEGER) is
−− Sets the ‘x’ and ‘y’ value

require
positive: an x >= 0 and an y >= 0

do
x := an x
y := an y

ensure
set: an x = x and an y = y

end

invariant

x positive: x >= 0
y positive: y >= 0

end

The pixel with the coordinate (0,0) is always at the top left of a surface
passed to draw and draw part. The coordinate (0,0) is called the origin. The
width is defined as the distance between the origin and the right most pixel of the

6

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

drawable. The height is defined as the distance between the origin and the bot-
tom most pixel of the drawable. This requires, that the x and y position is always
positive. This limitation seams to be stronger then needed at first sight. But
only that way the width and height of the ESDL DRAWABLE CONTAINER
can be implemented consistent to the definition without extending the interface
of ESDL DRAWABLE.

At the moment 11 effective classes inherit from ESDL DRAWABLE and can
be used as drawables. See Figure 1 on the following page.

7

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

Figure 1: ESDL DRAWABLE BON Diagram

8

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

2.3 ESDL SURFACE

ESDL SURFACE is an ESDL DRAWABLE.
ESDL SURFACE is a two dimensional RGB bitmap. You can draw any

ESDL DRAWABLE to an ESDL SURFACE. If you want to program in ESDL
you first need a base surface: the screen. You can get a screen with the following
sequence of code:

local
esdl: ESDL
screen: ESDL SURFACE

do
create esdl.make
esdl.set video surface width (width)
esdl.set video surface height (height)
esdl.set video bpp (resolution)
esdl.set fullscreen (True)
esdl.set doublebuffered (True)
esdl.set hardware surface (True)
esdl.set hwpalette (True)
esdl.showcursor (False)
esdl.initialize video surface
screen := esdl.video surface

end

Where width is the width of the screen and height is the height of the screen.
You can use any combination as width and height, but you should use one that
is directly supported by your graphics card, if you want to run your program in
full screen mode. A supported resolution is in this case faster than an arbitrary
combination. In Windows you can find out which resolutions your card supports
by clicking right on the desktop and selecting Properties . Settings. In the
Screen area you can see all possible combinations. Very common ones are: 640
by 480 pixels, 800 by 600 pixels and 1024 by 768 pixels. Those should be
supported by every modern video card.

The resolution is the number of bits used to represent color information. You
can use 8, 16, 24 or 32 bits as resolution. You should avoid using a resolution
of 24 bits because such a resolution is a lot slower then the others.

Once you have a screen you can draw other ESDL DRAWABLEs to it. You
can also create your own ESDL SURFACEs. There exist two possibilities for
doing so:

1. make from image (an image file name: STRING)
This feature loads an image from a file and creates an ESDL SURFACE

9

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

from this image. The format is the same as the format of the current
screen. This feature uses the SDL image library to load an image [6].
Supported file types are: BMP, PNM, XPM, XCF, PCX, GIF, JPG, TIF,
PNG and LBM.

2. make (w :INTEGER; h:INTEGER)
This feature creates an ESDL SURFACE with width w and height h. The
format is the same as the format of the current screen.

You can give an ESDL SURFACE a so called key color with the command
set colorkey. Every pixel with the color defined with set colorkey is not drawn,
but it will be transparent.

ESDL SURFACEs are collected by the Eiffel garbage collector. If you want
to force that (at start of a new level for example) inherit from the class MEM-
ORY and call full collect.

2.3.1 Example

local
picture: ESDL SURFACE

do
create picture.make from image ("lovely.gif")
picture.set colorkey (255, 255, 255)
picture.draw (screen)
screen.redraw

end

2.4 ESDL SPRITE

An ESDL SPRITE is an ESDL DRAWABLE.
ESDL SPRITE is a player for an ARRAY of ESDL DRAWABLEs. It works

like a movie player for a movie, where the player is the ESDL SPRITE and the
movie is the ARRAY of ESDL DRAWABLEs. To use an ESDL SPRITE you
first create an ARRAY of ESDL DRAWABLEs and pass it to an ESDL SPRITE
with make (an animation: ARRAY [ESDL DRAWABLE]). You can start and
stop the playback with the feature set stop (b: BOOLEAN). You can set the
playback speed with the feature set frame rate (i : INTEGER). The frame rate
indicates how many different pictures of the animation are shown per second.
The frame rate can be less than zero, the animation is then played in reverse
order. The frame rate can not be zero, use set stop (true) instead. If repeat is
true the animation is played over and over again, otherwise the playback ends
at the last frame.

2.4.1 ESDL ANIMATION

An ESDL ANIMATION is an ARRAY of ESDL DRAWABLEs.

10

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

An ESDL ANIMATION can be played by an ESDL SPRITE.
Besides the normal ARRAY creations: make (min index, max index : INTE-

GER) and make from array (a: ARRAY [ESDL DRAWABLE]) you can also
create an ESDL ANIMATION with make from file (file name: STRING) where
file name is the name of a file describing the animation. The format of the an-
imation file is a list of file names prefixed by the key color. More formal in
EBNF (where nl means new line):

File ::= Color key File list eof
Color key ::= color key red nl color key green nl color key blue
File list ::= [nl file name of picture]*

Each file name of picture is the file name of a picture like a BMP or GIF file.
An example file f1.anim from the ESDL Racing example on page 29 looks like
the animation script shown below.

0
0
0
./pics/f11.gif
./pics/f12.gif
./pics/f11.gif
./pics/f13.gif

2.4.2 ESDL RANDOM SPRITE

An ESDL RANDOM SPRITE is an ESDL SPRITE where the frames are not
shown in order but a randomly chosen frame is shown. If respect speed is true
then a new frame is chosen each 1

frame rate seconds, otherwise an other frame
is chosen each call of draw and draw part.

2.4.3 Example

local
anim: ESDL ANIMATION

sprite: ESDL SPRITE

do
create anim.make from file ("f1.anim")
create sprite.make (anim)
sprite.draw (screen)
screen.redraw

end

2.5 ESDL TILE PATTERN

An ESDL TILE PATTERN is an ESDL DRAWABLE.

11

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

ESDL TILE PATTERN is deferred. The two children
ESDL TILE PATTERN HORIZONTAL and ESDL TILE PATTERN VERTICAL
make ESDL TILE PATTERN effective.

In an ESDL TILE PATTERN an ESDL DRAWABLE works like a tile that
is glued together a number of times in either horizontal or vertical direction to
build a pattern. The feature set times (an integer : INTEGER) allows to define
how many times the ESDL DRAWABLE is repeated to build the pattern.

2.5.1 ESDL TILE PATTERN HORIZONTAL

An ESDL TILE PATTERN HORIZONTAL is an ESDL TILE PATTERN.
In an ESDL TILE PATTERN HORIZONTAL an ESDL DRAWABLE is glued

together in horizontal direction.

2.5.2 ESDL TILE PATTERN VERTICAL

An ESDL TILE PATTERN VERTICAL is an ESDL TILE PATTERN.
In an ESDL TILE PATTERN VERTICAL an ESDL DRAWABLE is glued

together in vertical direction.

2.5.3 Example

local
picture: ESDL SURFACE

tph: ESDL TILE PATTERN HORIZONTAL

do
create picture.make from image ("lovely.gif")
create tph.make (picture, 3)
tph.draw (screen)
screen.redraw

end

2.6 ESDL NEVER ENDING BACKGROUND

An ESDL NEVER ENDING BACKGROUND is an ESDL DRAWABLE.
ESDL NEVER ENDING BACKGROUND is deferred. The two children

ESDL NEVER ENDING BACKGROUND HORIZONTAL and ESDL NEVER
ENDING BACKGROUND VERTICAL make ESDL NEVER ENDING BACK-
GROUND effective.

You can think of an ESDL NEVER ENDING BACKGROUND as the kind
of background used in old movies if a scene in a car is recorded. It is a large pic-
ture that is pulled behind the car. An ESDL NEVER ENDING BACKGROUND
is very similar to that concept too. It expects an ESDL DRAWABLE as argu-
ment. This ESDL DRAWABLE is glued together over and over again, either in

12

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

Figure 2: A never ending background

horizontal or vertical direction, to fill the whole size of the screen. Internally
ESDL NEVER ENDING BACKGROUND uses a ESDL TILE PATTERN.

You can set the speed (in pixels per second) of the background with the
command set speed. The background is then moved in either horizontal or
vertical direction. See figure 2.

2.6.1 ESDL NEVER ENDING BACKGROUND HORIZONTAL

An ESDL NEVER ENDING BACKGROUND HORIZONTAL is an ESDL NEVER
ENDING BACKGROUND constraint to horizontal movement. A positive speed
value moves the background from right to left. A negative one in the other di-
rection.

2.6.2 ESDL NEVER ENDING BACKGROUND VERTICAL

An ESDL NEVER ENDING BACKGROUND VERTICAL is an ESDL NEVER
ENDING BACKGROUND constraint to vertical movement. A positive speed
value moves the background from below to top. A negative one in the other
direction.

13

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

2.6.3 Example

local
picture: ESDL SURFACE

background:
ESDL NEVER ENDING BACKGROUND HORIZONTAL

do
create picture.make from image ("lovely.gif")
create background.make (picture)
background.set speed (10)
background.draw (screen)
screen.redraw

end

2.7 ESDL DRAWABLE CONTAINER

An ESDL DRAWABLE CONTAINER is an ESDL DRAWABLE and a
DS LINKED LIST of ESDL DRAWABLEs.

If an ESDL DRAWABLE CONTAINER is drawn to an ESDL SURFACE
all its elements are drawn to this ESDL SURFACE. First element of the
DS LINKED LIST is drawn first, last is drawn last.

The ESDL DRAWABLE CONTAINER is a very powerful class since an
ESDL DRAWABLE CONTAINER represents a new coordinate system for all
its elements. That means, that the new coordinate origin is the top left pixel of
the ESDL DRAWABLE CONTAINER. For example: You add an ESDL SURFACE
with position (10,10) to an ESDL DRAWABLE CONTAINER at position (20,20).
If you then draw the ESDL DRAWABLE CONTAINER to the screen, the
ESDL SURFACE is drawn to position (30,30) at the screen. See figure 3 on
the next page.

14

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

Figure 3: A container

The ability to create new coordinate systems allows to build tree structures of
ESDL DRAWABLEs. You can build ESDL DRAWABLE CONTAINERs and
add these containers to other ESDL DRAWABLE CONTAINERs and so on
(Composite Pattern, see [2] and [7]).

If you need to iterate over the elements of the container you have to create
your own DS LINKED LIST CURSOR. The reason for that is, if you compile
your project in Eiffel Studio, not all your code seams to run in one thread, but
in finalized programs all code does. Since we want to be able to debug our
code, we have to make sure that the compiled code behaves the same way as
the finalized code. Therefore every iteration has to be done with a separate
cursor.

2.7.1 Example

local
a container:
ESDL DRAWABLE CONTAINER [ESDL SURFACE]
alien: ESDL SURFACE

cursor: DS LINKED LIST CURSOR [ESDL SURFACE]
do

create alien.make from image ("alien.gif")

15

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

alien.set x y (10, 10)
create a container.make
a container.set x y (20, 20)
a container.extend (alien)
a container.draw (screen)
screen.redraw
create cursor.make (a container)
from

cursor.start
until

cursor.off
loop

cursor.item.set x (cursor.item.x + 10)
cursor.forth

end
end

2.8 ESDL STRING

An ESDL STRING is an ESDL DRAWABLE.
An ESDL STRING expects a STRING and an ESDL FONT at creation.

ESDL STRING uses an ESDL DRAWABLE CONTAINER containing a list
of ESDL CHARACTERs. The ESDL FONT stored in font is used to draw
every character of the STRING stored in value. ESDL STRING is muta-
ble, that means you can change the value with set value (a value: STRING).
This is a slow operation. You can also change the used ESDL FONT with
set font (a font : ESDL FONT).

2.8.1 ESDL CHARACTER

An ESDL CHARACTER is an ESDL DRAWABLE.
An ESDL CHARACTER expects a CHARACTER and an ESDL FONT at

creation. The ESDL FONT stored in font is used to draw the CHARACTER
stored in character.

2.8.2 ESDL FONT

The deferred class ESDL FONT should be implemented by every kind of font.
An ESDL FONT can draw a CHARACTER or part of it to an ESDL SURFACE
to a given position. An ESDL FONT can also be asked for the width and the
height of a CHARACTER.

16

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

deferred class
ESDL FONT

feature −− commands

draw (a character: CHARACTER;
a surface: ESDL SURFACE;
x: INTEGER; y: INTEGER) is
−− Draws ‘a character’ to ‘a surface’

−− to position ‘x’ ‘y’

require
a surface /= void

a character /= void

deferred
end

draw part (rect: ESDL RECT; a character: CHARACTER;
a surface: ESDL SURFACE;
x: INTEGER; y: INTEGER) is
−− Draws ‘rect’ part of ‘a character’ to
−−‘a surface’ to position ‘x’ ‘y’

require
a surface /= void

a character /= void

rect /= void

deferred
end

feature −− queries

width (a character: CHARACTER): INTEGER is
−− The width of ‘a character’

deferred
end

height (a character: CHARACTER): INTEGER is
−− The height of ‘a character’

deferred
end

end

17

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

Figure 5: Bitmap font Arial 256

At the moment only one class is effecting ESDL FONT: The ESDL BITMAPFONT.
In the future an ESDL VECTORFONT can be implemented without changing
any class. See figure 4.

Figure 4: ESDL FONT BON Diagram

2.8.3 ESDL BITMAPFONT

ESDL BITMAPFONT is an ESDL FONT.
An ESDL BITMAPFONT expects an ESDL DRAWABLE that represents

a matrix. Every row and every column contains 16 ASCII characters. That are
16*16=256 characters. The character with the ASCII number 0 is at the top left,
the character with the ASCII number 255 is at the bottom right. The program
Bitmap font Builder (www.lmnopc.com/bitmapfontbuilder/) can create such
images (see figure 5)

The height of a CHARACTER is the height of font divided by 16, the width
is the width of font divided by 16.

Since you can pass an ESDL DRAWABLE as matrix you can, for example,
build animated fonts. You should not pass an
ESDL NEVER ENDING BACKGROUND because of the resulting width or
height of a CHARACTER.

18

www.lmnopc.com/bitmapfontbuilder/

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

2.8.4 Example

local
str: ESDL STRING

font: ESDL BITMAPFONT

matrix: ESDL SURFACE

do
create matrix.make from image ("arial256.gif")
create font.make (matrix)
create str.make ("Hello world", font)
str.draw (screen)
screen.redraw

end

2.9 ESDL FRAME COUNTER

An ESDL FRAME COUNTER is an ESDL DRAWABLE.
An ESDL FRAME COUNTER is a very useful utility. You can draw a frame

counter every frame to the screen and get information about the performance
of your program. The frame counter is used in many of the examples. It
calculates the frame rate averaged over the last 10 frames. The frame rate
is a measure for how many times per second the computer executes draw or
draw part feature of ESDL FRAME COUNTER. ESDL FRAME COUNTER
uses an ESDL BITMAPFONT to print the rate to a surface. If you use an
ESDL FRAME COUNTER you have to provide a copy of the file arial256.gif
in the same directory where the ACE file of your program is. You find the file
arial256.gif in most of the example directories (see figure 5 on the preceding
page).

2.9.1 Example

local
fc: ESDL FRAME COUNTER

do
create fc.make
fc.draw (screen)
screen.redraw

end

2.10 ESDL TIME

The class ESDL TIME provides the ESDL programmer with functionalities re-
lated to time measurement. The two most important features are delay (mil-

19

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

liseconds: INTEGER) and get ticks: INTEGER. A call to the command delay
needs at least milliseconds time. This gives you the possibility to hold the ex-
ecution of your program for a given amount of time. The SDL documentation
states that:

Note: Count on a delay granularity of at least 10 ms. Some platforms
have shorter clock ticks but this is the most common.

The feature get ticks returns the number of milliseconds since ESDL initializa-
tion. Do not count on getting precise results from get ticks either. If you need
very precise information you have to calculate an average somehow. I did that in
the feature update cur position of the class ESDL NEVER ENDING BACK-
GROUND, to allow very smooth motion of a never ending background. Since
many of the classes in ESDL require that the time subsystem is initialized, the
time subsystem is initialized when you create an ESDL object. You can not in-
stantiate the class ESDL TIME afterwards, if you need its functionality inherit
from ESDL TIME SINGLETON and call feature get time: ESDL TIME.

2.10.1 Example

inherit
ESDL TIME SINGLETON

feature

test is
local

i: INTEGER

do
i := get time.get ticks

get time.delay (1000)
i := get time.get ticks − i

print (i.out + " >= 1000 may be true")
end

2.10.2 ESDL TIME SINGLETON

ESDL TIME SINGLETON ensures that only one instance of ESDL TIME ex-
ists in the system. To get that instance inherit from ESDL TIME SINGLETON
and call get time: ESDL TIME. Since Eiffel doesn’t support explicit static called
features the pattern described in [3] and implemented by ESDL TIME SIN-
GLETON is a possibility to ensure that only one instance of a class exists in
the system, or at least, make it hard to build a second one. The reason why
ESDL TIME must be a singleton is its ability to store and call a list of callbacks.

20

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

2.10.3 Callbacks

An other feature of ESDL TIME is the feature add timed callback (interval : IN-
TEGER; an action: FUNCTION [ANY, TUPLE [INTEGER], INTEGER])

The feature allows to pass a pointer to a function (agent) which has one
parameter of type INTEGER and an INTEGER as result. This function is
called after interval milliseconds. The value of the parameter is either the
number of milliseconds since the function was called last time or interval if it
is the first call. The resulting value can be less or equal to 0 if you don’t want
ESDL TIME to call the function again or any number greater 0. If the number
is greater 0 the function is called again after result number of milliseconds.
The agent an action should always be executed faster than interval. The agent
an action runs in a separate thread. You can use ESDL MUTEX to synchronize
between two threads.

2.10.4 Example

make is
do

get time.add timed callback

(100, agent action (?))
end

action (interval: INTEGER): INTEGER is
−− action is called every 100 milliseconds

do
Result := interval

end

2.10.5 ESDL MUTEX

You can use an ESDL MUTEX to synchronize threads. Its two features are lock
and unlock. The feature lock waits until the caller gets a lock on current. The
feature unlock releases the lock.

2.11 ESDL COLLIDABLE

Classes describing objects that can collide with other objects should be of
type ESDL COLLIDABLE. If an object collides with an other object on collide
(other : ESDL COLLIDABLE) is called by the ESDL COLLISION DETECTOR.
The type id query returns a number that is the same for all instances of a class.
This allows in on collide to determine of what kind the other object is.

21

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

deferred class
ESDL COLLIDABLE

feature −− Status report

does collide (other: like Current): BOOLEAN is
−− Does ‘current’ collide with ‘other’?

require
other not void: other /= void

deferred
end

type id: INTEGER is
−− The id given to all instances of ‘current’ generating
−− class

deferred
end

feature {ESDL COLLISION DETECTOR} −− Implementation

on collide (other: ESDL COLLIDABLE) is
−− ‘current’ collided with ‘other’

require
other not void: other /= void

deferred
end

end

2.11.1 ESDL RECT COLLIDABLE

ESDL RECT COLLIDABLE is an ESDL COLLIDABLE. An ESDL RECT rect-
angle is used to describe the size of an object. This rectangle is called bound-
ing box. If the intersection of the bounding box of one ESDL RECT COLLIDABLE
object and an other is not empty, the two objects collide. Finding out if such
an intersection is empty or not, can be done very fast.

22

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

deferred class
ESDL RECT COLLIDABLE

inherit
ESDL COLLIDABLE

feature −− Status

does collide (other: like Current): BOOLEAN is
−− Does ‘current’ collide with ‘other’?

do
Result :=
Current.bounding box.intersects
(other.bounding box)

end

bounding box: ESDL RECT is
−− The active elements of Current

deferred
end

end

2.11.2 ESDL COLLISION DETECTOR

An ESDL COLLISION DETECTOR can be used to check if any of its con-
taining ESDL COLLIDABLE objects collide with any other. You can add an
ESDL COLLIDABLE to an ESDL COLLISION DETECTOR with the com-
mand add (a collidable: ESDL COLLIDABLE). Every time you call
check for collision every object added to ESDL COLLISION DETECTOR is
tested with every other object added to ESDL COLLISION DETECTOR for
collision (O(n2)). If a collision is detected either the on collide feature of one
of the two colliding objects is called if call both is equals false or the on collide
features of both objects are called otherwise.

2.11.3 Example

See the collidable string example on page 28.

23

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

3 Examples

3.1 Bitmap fonts

Figure 6: Bitmap font example

The bitmap font example demonstrates how to use the class ESDL BITMAPFONT
to print characters on the screen.

24

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

3.2 Drawable demo

Figure 7: A drawable demo part 1

Figure 8: A drawable demo part 2

25

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

The drawable demo example demonstrates how you can combine some of the
ESDL DRAWABLE classes to build more and more complex objects.

26

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

3.3 Never ending background

Figure 9: A demo of a never ending background

The never ending background example demonstrates how you can combine an
ESDL NEVER ENDING BACKGROUND HORIZONTAL with an
ESDL NEVER ENDING BACKGROUND VERTICAL to build a never ending
background in any direction.

27

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

3.4 Collidable string

Figure 10: A demo of collidable strings

The collidable string example demonstrates how you can use the
ESDL RECT COLLIDABLE class in combination with the

ESDL COLLISION DETECTOR class to detect collisions of objects.

28

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

3.5 ESDL Racing

Figure 11: ESDL Racing level 1

Figure 12: ESDL Racing level 2

29

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

Figure 13: ESDL Racing level 3

The esdl racing example is the largest example. It is a fully playable rac-
ing game. All of the abilities of the classes described in this semester the-
sis report are used. The example also demonstrates how you can implement
menus connecting multiple scenes. Every scene should inherit from the de-
ferred class ESDL SCENE. The class MENU and the class LEVEL both extend
ESDL SCENE. An ESDL SCENE contains an event loop and the very impor-
tant feature next scene: ESDL SCENE. After current scene ends the next scene
is initialized by initialize scene and then executed by calling run from the main
loop if next scene is not void :

−− Main loop
from

scene := create {START}
until

scene = void

loop
scene.initialize scene

scene.run (screen)
scene := scene.next scene

end

START is the first scene, the main menu you see when you execute esdl racing.
If you want to create your own level inherit from LEVEL. See one of the

classes LEVEL01, LEVEL02 or LEVEL03 as an example. To make sure your

30

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

level is executed after LEVEL03 set the next scene of LEVEL03 accordingly in
the feature on win. To make testing easier there exist two cheat codes: press c
to turn off collision detection, press e to jump directly to the end of a level.

4 Future Work

• Implement scaling, rotation support and panning for surfaces
Using a filtering approach (A deferred FILTER class, together with classes
effecting it - e.g. SCALE FILTER that takes a surface and returns one).

• Extend event handling support for mouse events

• Extend font support
ESDL VECTORFONT - eventually with the metafont project that would
have to be wrapped separately.

• Implement audio subsystem
A format independent approach like the one taken for image formats is
desirable.

• Implement EiffelVision2 widgets (Linux and Windows)

• Extend video subsystem API with primitives (circles, lines, rectangles
etc.), anti aliasing, alpha channels, YUV

31

ETHZ D-INFK
Prof. Dr. Bertrand Meyer

ESDL API extensions
Benno Baumgartner

References

[1] Till G. Bay, 2003, Eiffel SDL multimedia library (ESDL) Version 0.0.1
http://n.ethz.ch/student/bayt/publications

[2] GOF patterns for GUI Design, 1998, James Noble, side 6
citeseer.nj.nec.com/noble98gof.html

[3] How to get a Singleton in Eiffel?, 2004, Karine Arnout, Éric Bezault
http://se.inf.ethz.ch/people/arnout/arnout bezault singleton.
pdf

[4] Simple Directmedia Layer
http://www.libsdl.org

[5] Eiffel Wrapper Generator
http://ewg.sourceforge.net/

[6] SDL image
http://www.libsdl.org/projects/SDL image/

[7] Design Patterns, 1995, Eric Gamma, Richard Helm, Ralph Johnson, John
Vlissides
http://www.amazon.com/exec/obidos/ASIN/0201633612/javaworld

32

http://n.ethz.ch/student/bayt/publications
citeseer.nj.nec.com/noble98gof.html
http://se.inf.ethz.ch/people/arnout/arnout_bezault_singleton.pdf
http://se.inf.ethz.ch/people/arnout/arnout_bezault_singleton.pdf
http://www.libsdl.org
http://ewg.sourceforge.net/
http://www.libsdl.org/projects/SDL_image/
http://www.amazon.com/exec/obidos/ASIN/0201633612/javaworld

	1 Introduction
	2 Implementation of the Extensions
	2.1 Overview
	2.2 ESDL_DRAWABLE
	2.3 ESDL_SURFACE
	2.3.1 Example

	2.4 ESDL_SPRITE
	2.4.1 ESDL_ANIMATION
	2.4.2 ESDL_RANDOM_SPRITE
	2.4.3 Example

	2.5 ESDL_TILE_PATTERN
	2.5.1 ESDL_TILE_PATTERN_HORIZONTAL
	2.5.2 ESDL_TILE_PATTERN_VERTICAL
	2.5.3 Example

	2.6 ESDL_NEVER_ENDING_BACKGROUND
	2.6.1 ESDL_NEVER_ENDING_BACKGROUND_HORIZONTAL
	2.6.2 ESDL_NEVER_ENDING_BACKGROUND_VERTICAL
	2.6.3 Example

	2.7 ESDL_DRAWABLE_CONTAINER
	2.7.1 Example

	2.8 ESDL_STRING
	2.8.1 ESDL_CHARACTER
	2.8.2 ESDL_FONT
	2.8.3 ESDL_BITMAPFONT
	2.8.4 Example

	2.9 ESDL_FRAME_COUNTER
	2.9.1 Example

	2.10 ESDL_TIME
	2.10.1 Example
	2.10.2 ESDL_TIME_SINGLETON
	2.10.3 Callbacks
	2.10.4 Example
	2.10.5 ESDL_MUTEX

	2.11 ESDL_COLLIDABLE
	2.11.1 ESDL_RECT_COLLIDABLE
	2.11.2 ESDL_COLLISION_DETECTOR
	2.11.3 Example

	3 Examples
	3.1 Bitmap fonts
	3.2 Drawable demo
	3.3 Never ending background
	3.4 Collidable string
	3.5 ESDL Racing

	4 Future Work

