
RESEARCH ANNOUNCEMENT:

FASTER FACTORIZATION

OF TWO NUMBERS INTO COPRIMES

DANIEL J. BERNSTEIN

Abstract. This paper presents an algorithm that, given positive integers a, b,
computes the natural coprime base for {a, b} in time n(lg n)2+o(1), where n is
the number of input bits.

My previous paper [1] introduced an algorithm that, given a set S of positive
integers, computes the natural coprime base cbS in time n(lg n)O(1), where n is the
number of input bits. I made no attempt in [1] to optimize the exponent of lg n.

This paper presents an algorithm that computes cb{a, b} in time n(lg n)2+o(1).
It is reasonable to conjecture that the limiting exponent 2 is optimal (for, e.g.,
a multitape Turing machine): one has cb{a, b} = {a, b} − {1} if and only if a, b
are coprime; the well-known problem of checking coprimality has been stuck at
n(lg n)2+o(1) for thirty years.

Step 1. Swap a, b if necessary so that a ≥ b. The algorithm will later reduce the
input length by at least one third of the length of a.

If a = 1, stop.

Step 2. Compute a0 = a, g0 = gcd{a0, b}, a1 = a0/g0, g1 = gcd
{

a1, g
2
0

}

, a2 =

a1/g1, g2 = gcd
{

a2, g
2
1

}

, and so on, until gk = 1.

For example, if a = 21003100 and b = 2137313, compute a0 = 21003100, g0 =
2100313, a1 = 387, g1 = 326, a2 = 361, g2 = 352, a3 = 39, g3 = 39, a4 = 1, g4 = 1.

Lower level: The gcd inputs ai, g
2
i−1 are often highly unbalanced. To compute

gcd
{

ai, g
2
i−1

}

, first divide ai by g2
i−1, and then use any standard fast gcd algorithm

to compute gcd
{

g2
i−1, ai mod g2

i−1

}

. The division takes time at most n(lg n)1+o(1);

the gcd takes time at most m(lg m)2+o(1) where m is the length of g2
i−1.

All the g’s together have length O(n), and k is at most about lg n, so the total
time here is at most n(lg n)2+o(1).

Step 3. Compute x0 = g0/gcd{g0, g
∞

1 }, x1 = g1/gcd{g1, g
∞

2 }, and so on.
For example, if a = 21003100 and b = 2137313, compute x0 = 2100, x1 = 1, x2 = 1,

x3 = 39.

Date: 2004.10.09. Permanent ID of this document: 53a2e278e21bcbb7287b81c563995925. This
is a preliminary version meant to announce ideas; it will be replaced by a final version meant to
record the ideas for posterity. There may be big changes before the final version. Future readers

should not be forced to look at preliminary versions, unless they want to check historical credits;
if you cite a preliminary version, please repeat all ideas that you are using from it, so that the
reader can skip it.

2000 Mathematics Subject Classification. Primary 11Y16.
The author was supported by the National Science Foundation under grant DMS–0140542,

and by the Alfred P. Sloan Foundation.

1



2 DANIEL J. BERNSTEIN

Lower level: Compute each gcd{gi−1, g
∞

i } as gcd
{

gi−1, g
2ei

i mod gi−1

}

where ei

is the smallest nonnegative integer satisfying 22ei

≥ gi−1. The repeated squarings
and gcd take time at most m(lg m)2+o(1) where m is the total length of gi−1, gi.
The total time here is at most n(lg n)2+o(1).

Step 4. Compute y0 = gcd{b, x∞

0 }, y1 = gcd{g0, x
∞

1 }, y2 = gcd{b, g1, x
∞

2 }, y3 =
gcd{b, g2, x

∞

3 }, and so on.
For example, if a = 21003100 and b = 2137313, the algorithm computes y0 = 2137,

y1 = 1, y2 = 1, y3 = 313.
Lower level: Compute b mod g1, b mod g2, . . . with a scaled remainder tree; this

takes time n(lg n)2+o(1) since b, g1, g2, . . . together have length O(n). Then compute
gcd{b, g1} as gcd{b mod g1, g1}; compute gcd{b, g2} as gcd{b mod g2, g2}; and so on.

Step 5. Recursively print cb{x0, y0/x0}; cb{x1, y1}; cb{x2, y2}; and so on. Also
print cb{a′} = {a′} − {1} and cb{b′} = {b′} − {1} where a′ = a/gcd{a, b∞} and
b′ = b/gcd{b, a∞}. Note that a′ has already been computed; it equals ak.

For example, if a = 21003100 and b = 2137313, recursively print cb
{

2100, 237
}

=

{2} and cb
{

39, 313
}

= {3}. Also print cb{1} = {} and cb{1} = {}. The complete
output is {2, 3}.

I claim that x0y0, x1y1, . . . , a
′, b′ are coprime; that a = a′x0x1y1x2y

3
2x3y

7
3 · · · ;

that b = b′y0y1y2y3 · · · ; and that y0x1y1x2y2 · · · , the product of inputs to the
recursive calls, is at most ab/a1/3 ≤ (ab)5/6. Each of these facts can be checked from
the following table of ordp values, expressed in terms of e = ordp a and f = ordp b:

g0 g1 g2 g3 . . . x0 y0 x1 y1 x2 y2 . . . a′ b′

0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 f if e = 0
e 0 0 0 . . . e f 0 0 0 0 . . . 0 0 if 0 < e ≤ f
f e−f 0 0 . . . 0 0 e−f f 0 0 . . . 0 0 if f < e ≤ 3f
f 2f e−3f 0 . . . 0 0 0 0 e−3f f . . . 0 0 if 3f < e ≤ 7f

...
0 0 0 0 . . . 0 0 0 0 0 0 . . . e 0 if f = 0 < e

Consequently the outputs of the algorithm are coprime; a and b are products of
powers of the outputs; and the recursion multiplies the total time by a bounded
factor.

Note that one can easily factor a, b over cb{a, b} by tracing the factorizations
a = a′x0x1y1x2y

3
2x3y

7
3 · · · and b = b′y0y1y2y3 · · · through the recursion.

References

[1] Daniel J. Bernstein, Factoring into coprimes in essentially linear time, to appear, Journal of
Algorithms. ISSN 0196–6774. URL: http://cr.yp.to/papers.html. ID f32943f0bb67a9317d4

021513f9eee5a.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@cr.yp.to


