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Abstract. This paper presents an algorithm that, given positive integers a, b,
computes the natural coprime base for {a, b} in time n(lg n)2+o(1), where n is
the number of input bits.

My previous paper [1] introduced an algorithm that, given a set S of positive
integers, computes the natural coprime base cbS in time n(lg n)O(1), where n is the
number of input bits. I made no attempt in [1] to optimize the exponent of lg n.

This paper presents an algorithm that computes cb{a, b} in time n(lg n)2+o(1).
It is reasonable to conjecture that the limiting exponent 2 is optimal (for, e.g.,
a multitape Turing machine): one has cb{a, b} = {a, b} − {1} if and only if a, b
are coprime; the well-known problem of checking coprimality has been stuck at
n(lg n)2+o(1) for thirty years.

Step 1. Swap a, b if necessary so that a ≥ b. The algorithm will later reduce the
input length by at least one third of the length of a.

If a = 1, stop.

Step 2. Compute a0 = a, g0 = gcd{a0, b}, a1 = a0/g0, g1 = gcd
{

a1, g
2
0

}

, a2 =

a1/g1, g2 = gcd
{

a2, g
2
1

}

, and so on, until gk = 1.

For example, if a = 21003100 and b = 2137313, compute a0 = 21003100, g0 =
2100313, a1 = 387, g1 = 326, a2 = 361, g2 = 352, a3 = 39, g3 = 39, a4 = 1, g4 = 1.

Lower level: The gcd inputs ai, g
2
i−1 are often highly unbalanced. To compute

gcd
{

ai, g
2
i−1

}

, first divide ai by g2
i−1, and then use any standard fast gcd algorithm

to compute gcd
{

g2
i−1, ai mod g2

i−1

}

. The division takes time at most n(lg n)1+o(1);

the gcd takes time at most m(lg m)2+o(1) where m is the length of g2
i−1.

All the g’s together have length O(n), and k is at most about lg n, so the total
time here is at most n(lg n)2+o(1).

Step 3. Compute x0 = g0/gcd{g0, g
∞

1 }, x1 = g1/gcd{g1, g
∞

2 }, and so on.
For example, if a = 21003100 and b = 2137313, compute x0 = 2100, x1 = 1, x2 = 1,

x3 = 39.
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Lower level: Compute each gcd{gi−1, g
∞

i } as gcd
{

gi−1, g
2ei

i mod gi−1

}

where ei

is the smallest nonnegative integer satisfying 22ei

≥ gi−1. The repeated squarings
and gcd take time at most m(lg m)2+o(1) where m is the total length of gi−1, gi.
The total time here is at most n(lg n)2+o(1).

Step 4. Compute y0 = gcd{b, x∞

0 }, y1 = gcd{g0, x
∞

1 }, y2 = gcd{b, g1, x
∞

2 }, y3 =
gcd{b, g2, x

∞

3 }, and so on.
For example, if a = 21003100 and b = 2137313, the algorithm computes y0 = 2137,

y1 = 1, y2 = 1, y3 = 313.
Lower level: Compute b mod g1, b mod g2, . . . with a scaled remainder tree; this

takes time n(lg n)2+o(1) since b, g1, g2, . . . together have length O(n). Then compute
gcd{b, g1} as gcd{b mod g1, g1}; compute gcd{b, g2} as gcd{b mod g2, g2}; and so on.

Step 5. Recursively print cb{x0, y0/x0}; cb{x1, y1}; cb{x2, y2}; and so on. Also
print cb{a′} = {a′} − {1} and cb{b′} = {b′} − {1} where a′ = a/gcd{a, b∞} and
b′ = b/gcd{b, a∞}. Note that a′ has already been computed; it equals ak.

For example, if a = 21003100 and b = 2137313, recursively print cb
{

2100, 237
}

=

{2} and cb
{

39, 313
}

= {3}. Also print cb{1} = {} and cb{1} = {}. The complete
output is {2, 3}.

I claim that x0y0, x1y1, . . . , a
′, b′ are coprime; that a = a′x0x1y1x2y

3
2x3y

7
3 · · · ;

that b = b′y0y1y2y3 · · · ; and that y0x1y1x2y2 · · · , the product of inputs to the
recursive calls, is at most ab/a1/3 ≤ (ab)5/6. Each of these facts can be checked from
the following table of ordp values, expressed in terms of e = ordp a and f = ordp b:

g0 g1 g2 g3 . . . x0 y0 x1 y1 x2 y2 . . . a′ b′

0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 f if e = 0
e 0 0 0 . . . e f 0 0 0 0 . . . 0 0 if 0 < e ≤ f
f e−f 0 0 . . . 0 0 e−f f 0 0 . . . 0 0 if f < e ≤ 3f
f 2f e−3f 0 . . . 0 0 0 0 e−3f f . . . 0 0 if 3f < e ≤ 7f

...
0 0 0 0 . . . 0 0 0 0 0 0 . . . e 0 if f = 0 < e

Consequently the outputs of the algorithm are coprime; a and b are products of
powers of the outputs; and the recursion multiplies the total time by a bounded
factor.

Note that one can easily factor a, b over cb{a, b} by tracing the factorizations
a = a′x0x1y1x2y

3
2x3y

7
3 · · · and b = b′y0y1y2y3 · · · through the recursion.
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