# SHARPER ABC-BASED BOUNDS FOR CONGRUENT POLYNOMIALS 

DANIEL J. BERNSTEIN


#### Abstract

Agrawal, Kayal, and Saxena recently introduced a new method of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena method depends on proven lower bounds for the size of the multiplicative semigroup generated by several polynomials modulo another polynomial $h$. Voloch pointed out an application of the Stothers-Mason ABC theorem in this context: under mild assumptions, distinct polynomials $A, B, C$ of degree at most $1.2 \mathrm{deg} h-0.2 \mathrm{deg} \mathrm{rad} A B C$ cannot all be congruent modulo $h$. This paper presents two improvements in the combinatorial part of Voloch's argument. The first improvement moves the degree bound up to $2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C$. The second improvement generalizes to $m \geq 3$ polynomials $A_{1}, \ldots, A_{m}$ of degree at most $((3 m-5) /(3 m-7)) \operatorname{deg} h-(\overline{6} /(3 m-7) m) \operatorname{deg} \operatorname{rad} A_{1} \cdots A_{m}$.


## 1. Introduction

Fix a nonconstant univariate polynomial $h$ over a field $k$. Assume that the characteristic of $k$ is at least $3 \operatorname{deg} h-1$. The main theorem of this paper, Theorem 2.3 , states that if $m \geq 3$ distinct polynomials $A_{1}, \ldots, A_{m}$ are all congruent modulo $h$ and coprime to $h$ then

$$
\max \left\{\operatorname{deg} A_{1}, \ldots, \operatorname{deg} A_{m}\right\}>\frac{3 m-5}{3 m-7} \operatorname{deg} h-\frac{6}{(3 m-7) m} \operatorname{deg} \operatorname{rad} A_{1} \cdots A_{m}
$$

As usual, $\operatorname{rad} X$ means the largest monic squarefree divisor of $X$, i.e., the product of the monic irreducibles dividing $X$. If deg $\operatorname{rad} A_{1} \cdots A_{m}<(m / 3) \operatorname{deg} h$ then this bound is better than the obvious bound $\max \left\{\operatorname{deg} A_{1}, \ldots, \operatorname{deg} A_{m}\right\}>\operatorname{deg} h-1$.

For example, if distinct polynomials $A, B, C$ are congruent modulo $h$ and coprime to $h$ then $\max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\}>2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C$. No better bound is possible in this level of generality: if $h=x^{10}-1, A=x^{20}, B=x^{10}$, and $C=1$ then $\operatorname{rad} A B C=\operatorname{rad} x^{30}=x$ so $2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C=19$.

The proof relies on the Stothers-Mason ABC theorem. Analogous bounds in the number-field case follow from the ABC conjecture.

Previous work. Voloch in [3] proved that $\max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\}>1.2 \operatorname{deg} h-$ 0.2 deg $\operatorname{rad} A B C$. This paper improves Voloch's result in two ways: first, it is quantitatively stronger, in the interesting case that $\operatorname{deg} \operatorname{rad} A B C<\operatorname{deg} h$; second, it applies to larger values of $m$.

[^0]Application. Consider the subgroup $G$ of $(k[x] / h)^{*}$ generated by $\{x-s: s \in S\}$, where $S \subseteq k$ and $0 \notin h(S)$. The Agrawal-Kayal-Saxena primality-proving method requires a lower bound on $\# G$ for groups $G$ of this type, typically with $\# S=\operatorname{deg} h$. The primality-proving method becomes faster as the lower bound on $\# G$ increases, as discussed in $[1$, Section 7$]$.

This paper shows that $\# G \geq \frac{1}{m-1}\left(\begin{array}{c}\lfloor((3 m-5) /(3 m-7)) \operatorname{deg} h-(6 /(3 m-7) m) \# S\rfloor+\# S\end{array}\right)$ for any $m \geq 3$. Indeed, the binomial coefficient is the number of products of powers of $\{x-s\}$ in $k[x]$ of degree at most $\lfloor((3 m-5) /(3 m-7)) \operatorname{deg} h-(6 /(3 m-7) m) \# S\rfloor$; $m$ distinct such products cannot all have the same image modulo $h$.

In particular, if $\# S=\operatorname{deg} h$, then $\# G \geq \frac{1}{3}\binom{\lfloor 2.1 \operatorname{deg} h\rfloor}{\operatorname{deg} h} \approx 4.27689^{\operatorname{deg} h}$. Compare this to the bound $\# G \geq\binom{ 2 \operatorname{deg} h-1}{\operatorname{deg} h} \approx 4^{\operatorname{deg} h}$ obtained from a degree bound of $\operatorname{deg} h-1$. Note that the improvement requires $m>3$.

Different methods from [3] produce a lower bound around $5.828^{\mathrm{deg} h}$, so the ABCbased techniques in [3] and in this paper have not yet had an impact on the speed of primality proving. However, I suspect that these techniques have not yet reached their limits.

## 2. Proofs

Theorem 2.1. Let $k$ be a field. Let $h$ be a positive-degree element of the polynomial ring $k[x]$. Assume that $1,2,3, \ldots, 3 \operatorname{deg} h-2$ are invertible in $k$. Let $A, B, C$ be distinct nonzero elements of $k[x]$. If $\operatorname{gcd}\{A, B, C\}=1$ and $A \equiv B \equiv C(\bmod h)$ then $\max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\}>2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C$.

Proof. Assume without loss of generality that $\operatorname{deg} A=\max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\}$. The nonzero polynomial $A-B$ is a multiple of $h$, $\operatorname{so} \operatorname{deg} A \geq \operatorname{deg}(A-B) \geq \operatorname{deg} h>0$; thus $\operatorname{deg} \operatorname{rad} A B C>0$.

If $\operatorname{deg} A \geq 2 \operatorname{deg} h$ then $\operatorname{deg} A>2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C$; done.
Define $U=(B-C) / h, V=(C-A) / h$, and $W=(A-B) / h$. Then $U \neq 0 ; V \neq 0$; $W \neq 0 ; U, V, W$ each have degree at most $\operatorname{deg} A-\operatorname{deg} h ;$ and $U A+V B+W C=0$. Define $D=\operatorname{gcd}\{U A, V B, W C\}$.

If $\operatorname{deg} D=\operatorname{deg} U A$ then $U A$ divides $V B, W C$; so $A$ divides $V W A, V W B, V W C$; so $A$ divides $\operatorname{gcd}\{V W A, V W B, V W C\}=V W$; but $V W \neq 0$, so $\operatorname{deg} A \leq \operatorname{deg} V W \leq$ $2(\operatorname{deg} A-\operatorname{deg} h) ;$ so $\operatorname{deg} A \geq 2 \operatorname{deg} h ;$ done.

Assume from now on that $\operatorname{deg} D<\operatorname{deg} U A$ and that $\operatorname{deg} A \leq 2 \operatorname{deg} h-1$. Then $\operatorname{deg}(U A / D)$ is between 1 and $2 \operatorname{deg} A-\operatorname{deg} h \leq 3 \operatorname{deg} h-2$; so the derivative of $U A / D$ is nonzero. Also $U A / D+V B / D+W C / D=0$, and $\operatorname{gcd}\{U A / D, V B / D, W C / D\}=$ 1. By Theorem 3.1 below, $\operatorname{deg}(U A / D)<\operatorname{deg} \operatorname{rad}((U A / D)(V B / D)(W C / D))$.

The proof follows Voloch up to this point. Voloch next observes that $D$ divides $\operatorname{gcd}\{U V W A, U V W B, U V W C\}=U V W \operatorname{gcd}\{A, B, C\}=U V W$. I claim that more is true: $D \operatorname{rad}((U A / D)(V B / D)(W C / D))$ divides $U V W \operatorname{rad} A B C$.
(In other words: If $d=\min \{u+a, v+b, w+c\}$ and $\min \{a, b, c\}=0$ then $d+$ $[u+v+w+a+b+c>3 d] \leq u+v+w+[a+b+c>0]$. Proof: Without loss of generality assume $a=0$. Then $d \leq u \leq u+v+w$. If $d<u+v+w$ then $d+[\cdots] \leq d+1 \leq u+v+w \leq u+v+w+[\cdots]$ as claimed. If $a+b+c>0$ then $d+[\cdots] \leq u+v+w+1=u+v+w+[\cdots]$ as claimed. Otherwise $u+v+w+a+b+c=$ $d \leq 3 d$ so $d+[u+v+w+a+b+c>3 d]=d \leq u+v+w \leq u+v+w+[\cdots]$ as claimed.)

Thus $\operatorname{deg} U A<\operatorname{deg}(D \operatorname{rad}((U A / D)(V B / D)(W C / D))) \leq \operatorname{deg}(U V W \operatorname{rad} A B C)$. Hence $\operatorname{deg} A<\operatorname{deg}(V W \operatorname{rad} A B C) \leq 2(\operatorname{deg} A-\operatorname{deg} h)+\operatorname{deg} \operatorname{rad} A B C$; i.e., $\operatorname{deg} A>$ $2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C$ as claimed.
Theorem 2.2. Let $k$ be a field. Let $h$ be a positive-degree element of the polynomial ring $k[x]$. Assume that $1,2,3, \ldots, 3 \operatorname{deg} h-2$ are invertible in $k$. Let $A, B, C$ be distinct nonzero elements of $k[x]$. If $\operatorname{gcd}\{A, B, C\}$ is coprime to $h$ and $A \equiv B \equiv$ $C(\bmod h)$ then

$$
\begin{aligned}
& \max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\} \\
& \quad>2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A-\operatorname{deg} \operatorname{rad} B-\operatorname{deg} \operatorname{rad} C \\
& \quad+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, B\}+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, C\}+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{B, C\} .
\end{aligned}
$$

Proof. Write $G=\operatorname{gcd}\{A, B, C\}$. Then $G$ is coprime to $h$, so $A / G \equiv B / G \equiv$ $C / G(\bmod h)$. By Theorem 2.1,

$$
\max \left\{\operatorname{deg} \frac{A}{G}, \operatorname{deg} \frac{B}{G}, \operatorname{deg} \frac{C}{G}\right\}>2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} \frac{A B C}{G G G} \geq 2 \operatorname{deg} h-\operatorname{deg} \operatorname{rad} A B C
$$

so $\max \{\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C\} \geq 2 \operatorname{deg} h+\operatorname{deg} G-\operatorname{deg} \operatorname{rad} A B C$. But $\operatorname{deg} G \geq$ deg $\operatorname{rad} G=\operatorname{deg} \operatorname{rad} A B C-\operatorname{deg} \operatorname{rad} A-\operatorname{deg} \operatorname{rad} B-\operatorname{deg} \operatorname{rad} C+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, B\}+$ $\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, C\}+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{B, C\}$ by inclusion-exclusion.

Theorem 2.3. Let $k$ be a field. Let $h$ be a positive-degree element of the polynomial ring $k[x]$. Assume that $1,2,3, \ldots, 3 \operatorname{deg} h-2$ are invertible in $k$. Let $S$ be a finite subset of $k[x]-\{0\}$, with $\# S \geq 3$. If each element of $S$ is coprime to $h$, and all the elements of $S$ are congruent modulo $h$, then

$$
\max \{\operatorname{deg} A: A \in S\}>\frac{3 \# S-5}{3 \# S-7} \operatorname{deg} h-\frac{6}{(3 \# S-7) \# S} \operatorname{deg} \operatorname{rad} \prod_{A \in S} A
$$

For example, $\max \{\operatorname{deg} A: A \in S\}>1.4 \operatorname{deg} h-0.3 \operatorname{deg} \operatorname{rad} \prod_{A \in S} A$ if $\# S=4$, and $\max \{\operatorname{deg} A: A \in S\}>1.25 \operatorname{deg} h-0.15 \operatorname{deg} \operatorname{rad} \prod_{A \in S} A$ if $\# S=5$.

Proof. Define $d=\max \{\operatorname{deg} A: A \in S\}$ and $e=\operatorname{deg} \operatorname{rad} \prod_{A \in S} A$. By Theorem 2.2,

$$
\begin{aligned}
& d>2 \text { deg } h-\operatorname{deg} \operatorname{rad} A-\text { deg } \operatorname{rad} B-\text { deg } \operatorname{rad} C \\
& \quad+\text { deg } \operatorname{rad} \operatorname{gcd}\{A, B\}+\text { deg } \operatorname{rad} \operatorname{gcd}\{A, C\}+\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{B, C\}
\end{aligned}
$$

for any distinct $A, B, C \in S$. Average this inequality over all choices of $A, B, C$ to see that $d>2 \operatorname{deg} h-3 \operatorname{avg}_{A} \operatorname{deg} \operatorname{rad} A+3 \operatorname{avg}_{A \neq B} \operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, B\}$. On the other hand, $e \geq \# S \operatorname{avg}_{A} \operatorname{deg} \operatorname{rad} A-\binom{\# S}{2} \operatorname{avg}_{A \neq B} \operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, B\}$ by inclusionexclusion, so

$$
d+\frac{3}{\# S} e>2 \operatorname{deg} h-\frac{3 \# S-9}{2} \operatorname{avg}_{A \neq B} \operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, B\}
$$

Note that $3 \# S-9 \geq 0$ since $\# S \geq 3$.
One can bound each term $\operatorname{deg} \operatorname{rad} \operatorname{gcd}\{A, B\}$ by the simple observation that $A / \operatorname{gcd}\{A, B\}$ and $B / \operatorname{gcd}\{A, B\}$ are distinct congruent polynomials of degree at most $d-\operatorname{deg} \operatorname{gcd}\{A, B\} ;$ thus $d-\operatorname{deg} \operatorname{gcd}\{A, B\} \geq \operatorname{deg} h$, so deg $\operatorname{rad} \operatorname{gcd}\{A, B\} \leq$ $d-\operatorname{deg} h$. Hence

$$
d+\frac{3}{\# S} e>2 \operatorname{deg} h-\frac{3 \# S-9}{2}(d-\operatorname{deg} h) ;
$$

i.e., $d>((3 \# S-5) /(3 \# S-7)) \operatorname{deg} h-(6 /(3 \# S-7) \# S) e$.

## 3. Appendix: the ABC theorem

Theorem 3.1 is a typical statement of the Stothers-Mason ABC theorem, included in this paper for completeness. The proof given here is due to Noah Snyder; see [2].
Theorem 3.1. Let $k$ be a field. Let $A, B, C$ be nonzero elements of the polynomial ring $k[x]$ with $A+B+C=0$ and $\operatorname{gcd}\{A, B, C\}=1$. If $\operatorname{deg} A \geq \operatorname{deg} \operatorname{rad} A B C$ then $A^{\prime}=0$.

In fact, $A^{\prime}=B^{\prime}=C^{\prime}=0$. As usual, $X^{\prime}$ means the derivative of $X$; the relevance of derivatives is that $X / \operatorname{rad} X$ divides $X^{\prime}$.

Proof. Note that $\operatorname{gcd}\{A, B\}=\operatorname{gcd}\{A, B,-(A+B)\}=\operatorname{gcd}\{A, B, C\}=1$. By the same argument, $\operatorname{gcd}\{A, C\}=1$ and $\operatorname{gcd}\{B, C\}=1$.
$C / \mathrm{rad} C$ divides both $C$ and $C^{\prime}$, so it divides $C^{\prime} B-C B^{\prime}$. Similarly, $B / \mathrm{rad} B$ divides $C^{\prime} B-C B^{\prime}$. Furthermore, $C^{\prime}=-\left(A^{\prime}+B^{\prime}\right)$, so $C^{\prime} B-C B^{\prime}=-\left(A^{\prime}+B^{\prime}\right) B+$ $(A+B) B^{\prime}=A B^{\prime}-A^{\prime} B$; thus $A / \operatorname{rad} A$ divides $C^{\prime} B-C B^{\prime}$.

The ratios $A / \operatorname{rad} A, B / \operatorname{rad} B, C / \operatorname{rad} C$ are pairwise coprime, so their product $A B C / \operatorname{rad} A B C$ divides $C^{\prime} B-C B^{\prime}$. But by hypothesis $\operatorname{deg}(A B C / \operatorname{rad} A B C)=$ $\operatorname{deg} A B C-\operatorname{deg} \operatorname{rad} A B C \geq \operatorname{deg} B C>\operatorname{deg}\left(C^{\prime} B-C B^{\prime}\right)$; so $C^{\prime} B-C B^{\prime}=0$; so $A B^{\prime}-A^{\prime} B=0$; so $A$ divides $A^{\prime} B$; but $A$ and $B$ are coprime, so $A$ divides $A^{\prime}$; but $\operatorname{deg} A>\operatorname{deg} A^{\prime}$, so $A^{\prime}=0$.

## References

[1] Daniel J. Bernstein, Proving primality in essentially quartic random time. Available from http://cr.yp.to/papers.html.
[2] Noah Snyder, An alternate proof of Mason's theorem, Elemente der Mathematik 55 (2000), 93-94. ISSN 0013-6018. MR 2001g:11033. Available from http://www. springerlink. com/openurl.asp?genre=article\&issn=0013-6018\&volume=55\&issue=3\&spage=93.
[3] José Felipe Voloch, On some subgroups of the multiplicative group of finite rings. Available from http://www.ma.utexas.edu/users/voloch/preprint.html.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

E-mail address: djb@cr.yp.to


[^0]:    Date: 2003.10.01. Permanent ID of this document: 1d9e079cee20138de8e119a99044baa3. 2000 Mathematics Subject Classification. Primary 11C08.
    The author was supported by the National Science Foundation under grant DMS-0140542, and by the Alfred P. Sloan Foundation. He used the libraries at the Mathematical Sciences Research Institute and the University of California at Berkeley.

