
We have to watch and listen

to everything that people

are doing so that we can

catch terrorists, drug dealers,

pedophiles, and organized

criminals. Some of this data

is sent unencrypted through

the Internet, or sent encrypted

to a company that passes the

data along to us, but we learn

much more when we have

comprehensive direct access

to hundreds of millions of disks

and screens and microphones

and cameras.



This talk explains how we’ve

successfully manipulated the

world’s software ecosystem to

ensure our continuing access to

this wealth of data. This talk

will not cover our efforts against

encryption, and will not cover our

hardware back doors.

Making sure

software stays insecure

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven



Some important clarifications:

1. “We” doesn’t include me.

I want secure software.



Some important clarifications:

1. “We” doesn’t include me.

I want secure software.

2. Their actions violate

fundamental human rights.



Some important clarifications:

1. “We” doesn’t include me.

I want secure software.

2. Their actions violate

fundamental human rights.

3. I don’t have evidence that

they’ve deliberately manipulated

the software ecosystem.



Some important clarifications:

1. “We” doesn’t include me.

I want secure software.

2. Their actions violate

fundamental human rights.

3. I don’t have evidence that

they’ve deliberately manipulated

the software ecosystem.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?



Distract managers, sysadmins, etc.

Identify activities that

can’t produce secure software

but that can nevertheless

be marketed as “security”.

Example: virus scanners.

Divert attention, funding, human

resources, etc. into “security”,

away from actual security.



Distract managers, sysadmins, etc.

Identify activities that

can’t produce secure software

but that can nevertheless

be marketed as “security”.

Example: virus scanners.

Divert attention, funding, human

resources, etc. into “security”,

away from actual security.

People naturally do this.

Attacker investment is magnified.

Attack discovery is unlikely.



2014 NIST “Framework for

improving critical infrastructure

cybersecurity”:

“Cybersecurity threats exploit

the increased complexity

and connectivity of critical

infrastructure systems, placing

the Nation’s security, economy,

and public safety and health at

risk. : : :



2014 NIST “Framework for

improving critical infrastructure

cybersecurity”:

“Cybersecurity threats exploit

the increased complexity

and connectivity of critical

infrastructure systems, placing

the Nation’s security, economy,

and public safety and health at

risk. : : : The Framework focuses

on using business drivers to

guide cybersecurity activities and

considering cybersecurity risks

as part of the organization’s risk

management processes.”



“This risk-based approach enables

an organization to gauge resource

estimates (e.g., staffing, funding)

to achieve cybersecurity goals in a

cost-effective, prioritized manner.”



“This risk-based approach enables

an organization to gauge resource

estimates (e.g., staffing, funding)

to achieve cybersecurity goals in a

cost-effective, prioritized manner.”

� “Identify.”

e.g. inventory your PCs.



“This risk-based approach enables

an organization to gauge resource

estimates (e.g., staffing, funding)

to achieve cybersecurity goals in a

cost-effective, prioritized manner.”

� “Identify.”

e.g. inventory your PCs.

� “Protect.”

e.g. inventory your humans.



“This risk-based approach enables

an organization to gauge resource

estimates (e.g., staffing, funding)

to achieve cybersecurity goals in a

cost-effective, prioritized manner.”

� “Identify.”

e.g. inventory your PCs.

� “Protect.”

e.g. inventory your humans.

� “Detect.”

e.g. install an IDS.



“This risk-based approach enables

an organization to gauge resource

estimates (e.g., staffing, funding)

to achieve cybersecurity goals in a

cost-effective, prioritized manner.”

� “Identify.”

e.g. inventory your PCs.

� “Protect.”

e.g. inventory your humans.

� “Detect.”

e.g. install an IDS.

� “Respond.”

e.g. coordinate with CERT.



“This risk-based approach enables

an organization to gauge resource

estimates (e.g., staffing, funding)

to achieve cybersecurity goals in a

cost-effective, prioritized manner.”

� “Identify.”

e.g. inventory your PCs.

� “Protect.”

e.g. inventory your humans.

� “Detect.”

e.g. install an IDS.

� “Respond.”

e.g. coordinate with CERT.

� “Recover.”

e.g. “Reputation is repaired.”



Categories inside “Protect”:

� “Access Control”.

� “Awareness and Training”.

� “Data Security”.

e.g. inventory your data.

� “Information Protection

Processes and Procedures”.

e.g. inventory your OS versions.

� “Maintenance”.

� “Protective Technology”.

e.g. review your audit logs.



Categories inside “Protect”:

� “Access Control”.

� “Awareness and Training”.

� “Data Security”.

e.g. inventory your data.

� “Information Protection

Processes and Procedures”.

e.g. inventory your OS versions.

� “Maintenance”.

� “Protective Technology”.

e.g. review your audit logs.

Subcategories in Framework: 98.

: : : promoting secure software: 0.



Categories inside “Protect”:

� “Access Control”.

� “Awareness and Training”.

� “Data Security”.

e.g. inventory your data.

� “Information Protection

Processes and Procedures”.

e.g. inventory your OS versions.

� “Maintenance”.

� “Protective Technology”.

e.g. review your audit logs.

Subcategories in Framework: 98.

: : : promoting secure software: 0.

This is how the money is spent.



Distract users

e.g. “Download only trusted

applications from reputable

sources or marketplaces.”

e.g. “Be suspicious of unknown

links or requests sent through

email or text message.”

e.g. “Immediately report any

suspect data or security breaches

to your supervisor and/or

authorities.”

e.g. “Ideally, you will have

separate computers for work and

personal use.”



Distract programmers

Example: automatic low-latency

software “security” updates.



Distract programmers

Example: automatic low-latency

software “security” updates.

Marketing: “security” is defined

by public security holes.

Known hole in Product 2014.06?

Update now to Product 2014.07!



Distract programmers

Example: automatic low-latency

software “security” updates.

Marketing: “security” is defined

by public security holes.

Known hole in Product 2014.06?

Update now to Product 2014.07!

To help the marketing,

publicize actual attacks that

exploit public security holes.



Distract programmers

Example: automatic low-latency

software “security” updates.

Marketing: “security” is defined

by public security holes.

Known hole in Product 2014.06?

Update now to Product 2014.07!

To help the marketing,

publicize actual attacks that

exploit public security holes.

Reality: Product 2014.07

also has security holes

that attackers are exploiting.



Distract researchers

Example:

When researcher finds attack

showing that a system is insecure,

create a competition for

the amount of damage.

“You corrupted only one file?”

“How many users are affected?”

“Do you really expect an attacker

to use 100 CPU cores for a month

just to break this system?”



Distract researchers

Example:

When researcher finds attack

showing that a system is insecure,

create a competition for

the amount of damage.

“You corrupted only one file?”

“How many users are affected?”

“Do you really expect an attacker

to use 100 CPU cores for a month

just to break this system?”

) More attack papers!



Discourage security

Tell programmers that

“100% security is impossible”

so they shouldn’t even try.



Discourage security

Tell programmers that

“100% security is impossible”

so they shouldn’t even try.

Tell programmers that

“defining security is impossible”

so it can’t be implemented.



Discourage security

Tell programmers that

“100% security is impossible”

so they shouldn’t even try.

Tell programmers that

“defining security is impossible”

so it can’t be implemented.

Hide/dismiss/mismeasure

security metric #1.



Discourage security

Tell programmers that

“100% security is impossible”

so they shouldn’t even try.

Tell programmers that

“defining security is impossible”

so it can’t be implemented.

Hide/dismiss/mismeasure

security metric #1.

Prioritize compatibility,

“standards”, speed, etc. e.g.:

“An HTTP server in the kernel

is critical for performance.”



What is security?

Integrity policy #1:

Whenever the computer

shows me a file,

it also tells me

the source of the file.

e.g. If Eve creates a file

and convinces the computer

to show me the file

as having source Frank

then this policy is violated.

I have a few other

security policies,

but this is my top priority.



The trusted computing base

1987: My first UNIX experience.

Low-cost terminals access

multi-user Ultrix computer.

Picture credit:
terminals.classiccmp.org

/wiki/index.php/DEC_VT102

http://terminals.classiccmp.org/wiki/index.php/DEC_VT102
http://terminals.classiccmp.org/wiki/index.php/DEC_VT102


I log in to the Ultrix computer,

store files labeled Dan,

start processes labeled Dan.

Eve logs in,

stores files labeled Eve,

starts processes labeled Eve.

Frank logs in,

stores files labeled Frank,

starts processes labeled Frank.

Eve and Frank cannot

store files labeled Dan,

start processes labeled Dan.

(Of course, sysadmin can.)



How is this implemented?

OS kernel allocates disk space:

system files

Dan my files

Eve Eve’s files

Frank Frank’s files

OS kernel allocates RAM:

kernel memory

Dan my processes

Eve Eve’s processes

Frank Frank’s processes



CPU hardware enforces

memory protection:

a user process cannot

read or write files

or RAM in other processes

without permission from kernel.

Kernel enforces various rules.

When a process creates another

process or a file, kernel copies uid.

Process is allowed to read or write

any file with the same uid,

but not with different uid.



Assume the hardware works.

How do we verify that

Eve can’t write Dan’s files?

1. Check the code that

enforces these rules.



Assume the hardware works.

How do we verify that

Eve can’t write Dan’s files?

1. Check the code that

enforces these rules.

2. Check the code that

allocates disk space, RAM;

and user-authentication code.



Assume the hardware works.

How do we verify that

Eve can’t write Dan’s files?

1. Check the code that

enforces these rules.

2. Check the code that

allocates disk space, RAM;

and user-authentication code.

3. Check all other kernel code.

Bugs anywhere in kernel

can override these rules.

Memory protection doesn’t apply;

language (C) doesn’t compensate.



The code we have to check is the

trusted computing base.

Security metric #1: TCB size.

Eve can’t write Dan’s files

unless there’s a TCB bug.

Eve’s actions: irrelevant.

Other software: irrelevant.

Millions of lines of code

that we don’t have to check.

Do we need an audit log? No.

Keep computers separate? No.

Limit software Eve can run? No.



File sharing

So far have described

complete user isolation.

But users want to share

many of their files:

consider the Web, email, etc.

I want to be able

to mark a file I own

as readable to just me;

or also readable to Frank;

or to Eve+Frank;

or to a bigger group;

or to the general public.



Say Frank creates a file,

makes it readable to me.

I save a copy.

Later I look at the copy.

Remember integrity policy #1:

Whenever the computer

shows me a file,

it also tells me

the source of the file.

) Computer has to tell me

that Frank was the source.

I own the copy

but Frank is the source.



Obvious implementation:

The OS kernel tracks

source for each file, process.

When my copying process

opens the file from Frank,

the OS kernel marks Frank

as a source for that process.

When process creates file,

the kernel copies source.

Typical OS kernels today

don’t even try to do this.



More complicated example:

Eve and Frank create files,

make them readable to me.

I have a process that

reads the file from Eve,

reads the file from Frank,

creates an output file.



More complicated example:

Eve and Frank create files,

make them readable to me.

I have a process that

reads the file from Eve,

reads the file from Frank,

creates an output file.

Integrity policy #1 )

The OS kernel marks

both Frank and Eve

as sources for the process,

then sources for the file.



Web browsing

Frank posts news-20140710

on his web server.

My browser retrieves the file,

shows it to me.

Integrity policy #1 )

My computer tells me that

Frank was the source.

A modern browser tries

to enforce this policy.

But browser is a massive TCB,

very expensive to check,

full of critical bugs.



What if I instead

give Frank a file-upload

account on my computer?

Frank logs in,

stores a file news-20140710.

I start a process

that looks at the file.

If OS tracks sources

then it tells me that

Frank was the source.



Why should this be manual?

Browser creates process

that downloads news-20140710

from Frank’s web server.

(“Creating a process is slow.”

—Oh, shut up already.)

OS automatically

adds URL as a source

for the process.

Process shows me the file.

OS tells me the URL.



Closing thoughts

Is the community

even trying to build

a software system

with a small TCB

that enforces integrity policy #1?

If software security is a failure,

does this mean that

security is impossible,

or does it mean that

the community isn’t trying?


