
THE LISP MACHINE:
NOBLE EXPERIMENT OR FABULOUS FAILURE?

P. T. Withington
Symbolics, Inc.

The “Lisp Machine”, a custom computer
work-station designed specifically for the
execution of Lisp, has been an important
part of the Lisp tradition for 20 years.
Recently, the Lisp Machine has been depre-
cated in view of the demise of many Lisp
Machine vendors, the swing towards stan-
dardization, and the advances that reduced
instruction set (RISC) architectures have
brought. But rumors of its death are greatly
exaggerated.

Unlike most commercial computer lan-
guages, Lisp has always been a language of
ideals. Its roots are in the theory of lambda-
calculus. Whereas other languages burden
the programmer with implementational gaps
in their abstractions, Lisp has always had the
aim of supporting complete abstractions.1

This idealistic bent of Lisp has led to it often
being the language of choice for computer-
oriented research in universities and indus-
try. Removing the more mundane difficul-
ties of computer programming allowed
researchers to experiment with super-
complex (at the time) technologies such as
windowing, presentation managers, object-

1For example, in ‘C’ the answer to (1-2/3)*3 is either
3 (!) or perhaps 0.99999994, in Lisp it is 1; in ‘C’ the
answer to 2147483647+2147483647 is -2 (!), in Lisp
it is 4294967294. Because ‘C’ is transparent to imple-
mentation detail, it may be that some ‘C’ implementa-
tions will give the right answer (or a different wrong
answer) for these particular examples; nonetheless, the
programmer’s task is often more difficult because of
this transparency. Lisp also has finite limits in its
implementation, but they are usually large enough to
not be of practical importance.

oriented programming, integrated pro-
gramming environments, computer music,
integrated-circuit design, and of course
Artificial Intelligence (AI).

But, Lisp’s purity did not come without a
price. The choice by many languages to
expose implementational limitations is often
a choice of efficiency. The speed of the
normal case is optimized at the risk of the
abnormal case going undetected. Lisp, on
the other hand, guarantees the unusual as
well as the usual will be dealt with uni-
formly. It must always be on its guard:
every operation must be checked for excep-
tions. As a consequence, Lisp on conven-
tional machines has historically been pon-
derous to work with.

In the early 1970’s several groups of
researchers utilized two novel hardware
technologies to improve the efficiency of
Lisp: tagged architectures and micro-
programming. Tagged architectures store
type information with each data word,
tracking dynamically changing types (a
prominent feature of the Lisp language) with
essentially no overhead. Micro-program-
ming allows a simpler compiler by imple-
menting complex instructions that more
closely match the high-level semantics of
the Lisp language. Experimenting with
these techniques eventually led to commer-
cial introductions of “Lisp Machines”.

Other novel features of these machines
include:

2 THE LISP MACHINE

11 JULY 1991 DRAFT

• The “stack cache”— Execution of Lisp
is stack-oriented. By caching the top
elements of the stack, efficiency
approaching that of register-based
execution is achieved without complex
register allocation algorithms in the
compiler. The stack cache also supports
fast function call and return, as if the
function arguments and values are
passed in registers.

• Garbage-collection support— Lisp’s
storage management system is often
implemented as a “garbage collector”,
which automatically reclaims unused
objects. The Lisp Machine virtual
memory hardware, in concert with the
type tags, tracks object-reference loads
and stores so the software can determine
quickly which objects are in use and
efficiently reclaim those that are not.

• Instruction emulation— When the Lisp
Machine hardware encounters an
exceptional situation (for example, an
integer arithmetic operation that exceeds
the hardware imposed implementation
limit or an operation on a software-
defined type) the hardware traps out to a
software “emulator” subroutine. This
subroutine implements the full
semantics of the operation, as specified
by Lisp, as though it is being handled by
the machine instruction.

Early Lisp Machines implemented their
micro-programmed architectures with a
writable control store, which meant the
instruction set, and to a certain extent other
architectural features of the machine, could
be changed by simply writing, compiling,
and loading new micro-code. This flexi-
bility led to further experimentation and
evolution of the hardware support for Lisp.

In the late 70’s and early 80’s both AI and
the Lisp Machine enjoyed a brief but heady
vogue. Two small companies, Symbolics
and Lisp Machines, Inc. (LMI), were
founded to build Lisp Machines; Symbolics

was eventually taken public. Xerox and
Texas Instruments (TI) also entered the
market. As late as 1986, Integrated Infer-
ence Machines (IIM) entered the Lisp
Machine market. Computer science
researchers, eager to speed their experi-
ments, snapped up the machines. Com-
panies bought them for their R&D labs in
hopes of solving a wide array of problems
from analyzing stock trades, to interpreting
seismological data, to scheduling airlines, to
evaluating loan applications. At the time,
Lisp Machines were the only computer
work-station of significant power and the
only economic solution to efficiently devel-
oping and running Lisp programs.

The Lisp Machines produced by these com-
panies went through several evolutionary
generations: starting at the high price of
$150,000 and implemented in TTL in a box
rivalling the VAX/780 in size and power
consumption2 and eventually being deliv-
ered as 1- or 2-chip VLSI implementations
on $10,000 add-in boards for the Apple
MacIntosh. With this latest generation of
Lisp Machines, Symbolics was satisfied that
its instruction set had evolved sufficiently to
commit it to mask-programmed ROM.
However, the small size of the market for
these machines has meant they are unable to
take advantage of the cutting-edge hardware
technology of commodity machines. They
always lag by a few generations, where
design and production costs are more
reasonable.

Initially, the small companies received great
exposure in the popular press. Because they
represented a “pure play”3 in AI, they were
the darlings of Wall Street. But today, only

2It is amusing to realize that a machine of this size and
price was ever considered a work-station.

3An investment term meaning the company is in a
single market and can be expected to track that mar-
ket’s fortunes more closely than a diversified company
might.

P. T. WITHINGTON 3

DRAFT 11 JULY 1991

Symbolics remains in the market trying to
sell Lisp Machine work-stations, at about
1/6 the size of its heyday. The popular
opinion is that AI technology was oversold
and lost its credibility; while at the same
time, Unix was rising to meet the need for
standards and RISC computers, with their
simple instructions that can be executed at
fantastic rates, obviated the need for a cus-
tom machine to implement Lisp. The press
was as quick to damn the Lisp Machine
companies as it had been to praise them,
when they did not meet over-inflated
expectations.

A more charitable interpretation of the same
facts might be that the Lisp Machine market
(by its esoteric nature) is small, and given
normal start-up statistics, is doing surpris-
ingly well. The Lisp Machine was a pioneer
in the early days of work-station technology.
It had the now standard high-resolution bit-
mapped display, mouse pointing device,
large virtual memory and local disk; it even
had 16-bit digital stereo sound! Some of
these innovations contributed to the evolu-
tion of Lisp and its associated technologies.
Unfortunately, the similarity of these fea-
tures to those eventually found on general-
purpose work-stations led to confusion over
what the market for the Lisp Machine was.
The exotic features of the Lisp Machine that
made it ideal for running Lisp and the
dream-machine of many computer
researchers had little or no value in the
general-purpose market. The success it
enjoyed as a Lisp engineering work-station
faltered at attempts to market it as a
computer-aided software engineering
(CASE) work-station.

At the very least, one can say that the Lisp
Machine was there for Lisp when it threat-
ened to drown in its own idealism, due to
the primitive power of the hardware
architectures of its time. The attention the
Lisp Machine companies drew may have
added life to the Lisp market; it certainly
added to the investment in Lisp research. In
their heyday, the companies making Lisp

Machines attracted top-notch talent and
funded innovative research in many areas of
computer science, both hardware and
software.

However, the Lisp language did suffer in the
commercial market from its association with
what many customers have come to regard
as the “snake oil” of AI. Because its only
perceived redeeming value was to run Lisp,
the Lisp Machine suffered doubly so.
Despite the grim appearance of the future of
the Lisp Machine, there remain small groups
of zealots who will not part with their Lisp
machines without a fight. They battle
“MIS” departments and often end up closet-
ing their Lisp Machines, so they won’t be
pestered about their non-approved
equipment.

It has been argued that while Lisp may rep-
resent the ideal solution to a problem, the
ideal solution is not always the economic
solution, even more so when it requires a
custom machine to run it. Today, there is a
wide choice of general-purpose computer
work-stations of similar power to the Lisp
Machine, most with competitive Lisp
implementations. Many of the software
technologies that were considered research
areas when the Lisp Machine was
introduced have been codified to the point
that they are amenable to implementations
using commodity software and hardware.
Others will follow. This trend has led many
to believe there is no longer a need for the
power of Lisp and even less a need for the
Lisp Machine. What is often not
considered, however, is whether these
technologies would be where they are today
(or would have been explored at all) in the
absence of the Lisp Machine. Despite the
trend toward commodity software and
hardware, there continue to be super-
complex and evolutionary problems where
the Lisp Machine is the ideal solution and
may well also be the most economic. The
future is likely to bring more.

4 THE LISP MACHINE

11 JULY 1991 DRAFT

Compiler technology has evolved signif-
icantly since the birth of the Lisp Machine.
Many of the problems that the micro-code of
the Lisp Machine solved for the compiler
writer can now be dealt with. The RISC
revolution, which depends on a super-simple
instruction set for its phenomenal execution
rate, has forced the compiler writer to deal
with similar problems, even in conventional
languages. But the companies that market
Lisp on RISC machines (perhaps begrudg-
ingly) admit that despite their hardware
technology lag, Lisp Machines are still com-
petitive or surpass the latest RISC imple-
mentations in both Lisp benchmarks and,
more often, high-end Lisp applications.

Today, most RISC hardware architectures
support either large register sets or register
windows, which bear great similarity to a
stack cache. Close examination of some of
the newest RISC architectures will reveal
support for tagged data, to efficiently
implement generic arithmetic operations.
Architecture research papers continue to
evaluate the merits of read and write
“barriers”, pioneered by Lisp Machine
garbage collectors to track object references
and speed automatic storage reclamation,
and “fast traps” to allow expeditious han-
dling of exceptional conditions in a manner
similar to the Lisp Machine instruction
emulation.

The current commercial versions of the Lisp
machine have reached about the level of
integration that floating-point and vector co-
processors had in the early 80’s. It remains
to be seen if they will end up as simply a
footnote in the history of Lisp, or if they will
continue to evolve and their best ideas live
on as an integral part of future commercial
computer hardware.

