
Copyright © 2001 Callitrope 1

2001-03-20 13:00-0500 P T Withington – Software Journeyman 1

Guiding Philosophy

• CPU cycles are Cheap,
People cycles are not

Applies to Users, and Programmers

In runtime systems we are often slaves to cycle counts. We believe that if we
take care of the pennies, the pounds will take care of themselves; so we spend
hours laboring over algorithm choice and implementation to minimize cycle
counts – at the expense of our own cycles that could be more productively
used elsewhere. Often these cycle-driven choices result in an algorithm that is
less general or less useful to our customer (the application designer), or an
implementation that prohibits or overlooks corner cases that will not be
exposed until our customer’s customer (the end user) has been using the
product for some time.

Jon Bently (of AT&T) in his “Programming Pearls” described a bug he
discovered in a text layout program (nroff) that had lain dormant for years
until a particular document took the algorithm into a branch of code that had
apparently never been used. The programmer had clearly spent some time
optimizing this particular case, with only one problem – he got it wrong.
Bently speculates as to the cost of that optimization – consider the cycles the
programmer put into designing and implementing it, add in the interest of
many years, and then discover the payoff was negative!

As a consumer of runtime libraries, you should choose the library for what it
does for you (and your customers) in terms of functionality, not the one that
produces the best benchmark.

This same philosophy can be applied to compilers, languages, and applications.

Tune for people cycles, not CPU cycles.

Copyright © 2001 Callitrope 2

2001-03-20 13:00-0500 P T Withington – Software Journeyman 2

Future Directions

• Safety, Reliability

It probably doesn’t matter if my IM session hangs. Or if Netscape or Explorer
“execute and illegal operation”. If my email is held on a backed-up IMAP
server, I probably don’t care if my mail client “unexpectedly quits”.

I get a little more anxious when Quicken or TurboTax crash though. I know
they have a reputation for ensuring that my transactions are recorded to disk,
but I get nervous when I see that the database is reindexed on the next launch.
I get especially nervous when my historical stock data has disappeared, or a
memorized transaction shows up in the wrong category.

Safety and reliability are boring. They don’t sell.

But lacking them costs people cycles. I have to re-enter my Quicken data. I
have to re-write my Word document. I have to re-draw my Illustrator diagram.

How many of these faults lie in the runtime that the application designer had
no control over? How many of these faults are because the application
designer did not have a reliable automatic memory management runtime and
had to design his own manual system instead? How many of these faults are
because the implementation language makes the application programmer
declare types left and right but then permits non-type-safe values (I.e., null) to
be assigned and passed?

Copyright © 2001 Callitrope 3

2001-03-20 13:00-0500 P T Withington – Software Journeyman 3

Secrets

• Whatever is worth doing at all,
is worth doing well

–Earl of Chesterfield

This doesn’t have to mean spending a lot of time creating a one-off solution.
It should mean doing something well enough that your efforts can be repaid by
subsequent users.

A solution that is done well will get re-used. It will benefit from use-testing,
and longevity will cause it to be polished and refined.

The ultimate extension of this is Open Source.

The power of Lisp and the Lisp Machines has been lost because of proprietary
interests.

It’s unfortunate that some great ideas are (still) secrets.

Copyright © 2001 Callitrope 4

2001-03-20 13:00-0500 P T Withington – Software Journeyman 4

Good ideas

• Garbage Collection

• Tagged Memory

• Microprogramming

Copyright © 2001 Callitrope 5

2001-03-20 13:00-0500 P T Withington – Software Journeyman 5

Garbage Collection

Seen on the silent-tristero mailing list....

Subject: Re: An illegal prime number
From: "Bryan O'Sullivan" <bos@serpentine.com>
Date: 16 Mar 2001 18:54:35 -0800

>> This may be the first known illegal prime.

When I tried to check this number for primality using the Miller-Rabin
test, my poor Lisp interpreter blew its stack. I'll have to try
rewriting it in Python, on the off chance that it behaves more
sensibly.

The decline of Lisp implementations into buggy, half-baked shadows of
their predecessors, along with the splicing of many of their ideas
into languages like Perl, reminds me of the monks in "A Canticle For
Leibowitz", miscomprehending the degraded high-tech artifacts they
occasionally ferret out.

<b

Garbage collection is finally coming back into vogue. Java has done much to
legitimize garbage collection. When will operating system and hardware
designers realize that this is a technique that is here to stay and support it in
their domains?

Copyright © 2001 Callitrope 6

2001-03-20 13:00-0500 P T Withington – Software Journeyman 6

Tagged Memory

From: "Scott Cyphers" <cyphers@sls.lcs.mit.edu>
Date: Thu, 1 Feb 2001 17:59:04 -0500
To: "P T Withington" <pt@withy.org>
Cc: "Martin Rinard" <rinard@cag.lcs.mit.edu>, <tcm@cs.cmu.edu>,
"Scott Cyphers" <cyphers@sls.lcs.mit.edu>
Subject: Todd Mowry seminar on memory forwarding summary

[...]

It's interesting how we cache the idea that tags are expensive
because memory is expensive when 32 meg of memory is now too
small to use.

Tagged memory was a popular hardware technique in the 70’s that was used to
support run-time type information. Eventually it was discarded because
“memory was expensive”, and compilers got better at optimizing away the
need for type information at run time. Although you might not know it from
some of today’s languages.

The Standard Template Libraries, which represent an excellent example of
something done well that has received significant polish through reuse, are
generic through the use of templates. Each instantiation costs code bloat.
How much could be saved if generic, run-time dispatch could be used instead?

Copyright © 2001 Callitrope 7

2001-03-20 13:00-0500 P T Withington – Software Journeyman 7

Microprogramming

“Modern processors are like nitro-fueled funny
cars – they excel at the 1/4 mile. Unfortunately
modern languages are like Monte Carlo – full
of twists and turns.”

— Dave Ungar 1998

What’s on your hard drive? JPEG’s? MP3’s? Code?

Copyright © 2001 Callitrope 8

2001-03-20 13:00-0500 P T Withington – Software Journeyman 8

Microprogramming

Speed

Quantity

2*10^37*10^53*10^73*10^810^9

10^1110^710^510^210^1

Disk
Main
Memory

L2 CacheL1 Cache
CPU
Registers

What’s on your hard drive? How is it compressed? Is “micro-code” a form of
code compression? (Think about how a single instruction in a virtual machine
is expanded into many native CPU instructions. If those instructions fit into
one of the CPU caches, are the a “micro-program”? Is an instruction cache
like a “writeable control store”?

Copyright © 2001 Callitrope 9

2001-03-20 13:00-0500 P T Withington – Software Journeyman 9

Pitfalls

Rules of Optimization:
Rule 1: Don’t do it.
Rule 2 (for experts only): Don’t do it yet.

— M.A. Jackson

"More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason - including blind stupidity."

— W.A. Wulf

"We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil."

— Donald Knuth

"The best is the enemy of the good."
— Voltaire

This collection of thoughts originally from Jonathan Hardwick
http://www.cs.cmu.edu/~jch

