Computing Integer Square Roots

James Ulery
phasorheat@yahoo.com

Assume that one has an arbitrary unsigned 32-bit value v for which one wishes to find the
largest unsigned 16-bit number # such that n* <v'. One can write:
Equation 1
n’ = (ar15215 +a, 2" +..+ ao)z <v
where the g; are either 0 or 1. How does one find the a,? Following is the derivation of an

iterative algorithm, requiring no multiplications, for doing so. It is a variation of the
traditional “subtract and shift” division algorithm. First, for convenience, define

Equation 2
_ i i1
v,=a2 +a,_27 +..+a,.

Equation 1 can then be written as

Egquation 3

2 _ 2
n°=rns <v.

Say that the current best guess for n, ﬁo, is 0. Since ﬁo is 0, one can add it to anything
without changing things, so
Equation 4

~ 2 A 2 A 2
(n0+r15) =n," +2nyh5 +n," <v

which can be rewritten as
Equation 5

A 2 _An 15 15 2 n 2
2nyns + 15 —2n0(a152 +r14)+(a152 +r14) <v-n, .

This can be partitioned as
Equation 6

A 2 A 2 A2
6115[2710215 +(215)]+ [27101‘14 +2a,2n, +n,]S v—n,".

This expression represents the key to the bit iteration test that forms the core of this algorithm,
as follows. First, note that both bracketed terms are positive. Now, say that one wishes to
know whether a5 is 0 or 1. Compute the left bracketed term (LBT). If the LBT exceeds

V- floz , Equation 6 would be violated if a;s were 1, so a;s must therefore be 0. However,
does this mean that if the LBT does not exceed v — ﬁ02 a15=1? Note that the LBT is a “step”
that “gets you closer to” v — fzoz , and that if you choose not to use it, the value of the right
bracketed term (RBT) must at least equal the LBT to “keep up with” v — fzoz . However, with
a;5=0, the RBT becomes 2ﬁ0r14 + A 42 , Which is always less than the LBT, so one would

. . A2
never choose a;5=0 if the LBT did not exceed Vv —H, . The test for a;s=1 then becomes

simply

! Though the derivation here uses specific input and output word sizes to make it concrete, it can be
generalized to any required input or output word length.

Equation 7
25, (2")+ 25] <v—-n,?.
If this test is not true, a;s must be 0. Having determined a;s, one then updates the best guess:
Equation 8
Ay, = fig +a, 2"

Squaring,
Equation 9

A2 a2 A 15 15)2
n" =n, +2nya,52 +a15<2)

Returning to Equation 5,
Equation 10

24, (c115215 +7,)+ (a15 2%+,)2 <v-hy
27,a,,2" + 27y, + (als 2P)2 +2a,,2"n, +1, <v-n,
2(ﬁ0 +a, 2", 4, <v— (szZ +2n,a,52" +ay; (215)2)
Substituting Equation 8 and Equation 9 into the last line of Equation 10 one gets
Equation 11
20,7, 1, <v—h,.

But this is in exactly the same form as Equation 5, from which a;5s was determined. The test
for a4 would therefore be

Equation 12
A 2 A2
2n1(214)+(214) <v-h .

Algorithm Specification
The previous discussion suggests an iterative procedure. For i=0,1,2,...,15:
Equation 13
1if24, (25)+ (25) <v,
0,else
Vi =V, — [2ﬁia15—i215_i +a;s,; (215_[)2

A A 15-i
By =0 +ap 2

15-i

where

These computations can be carried out by shifts and adds only.

C Implementation
The previous algorithm results in a very simple C implementation:

unsigned isqgrt (unsigned long v) {
unsigned long temp, nHat=0, b = 0x8000, bshft = 15;

do {
if (v >= (temp = (((nHat<<1l)+b)<<bshft--))) {
nHat += b;
v ~= temp;

1
} while (b >>= 1);
return nHat;

}
Here, I use the form:

25, (215"')+ (215“')2 = (2;%,. + 215‘i)215‘i — ((nHat << 1) + b) << bshft - -

when computing the a;.

ARM Implementation
Because of the ARM’s barrel shifter, this algorithm maps very efficiently to ARM assembly
code:

Define register aliases to make the code easier to read.

’

v RN r0
nHat RN rl
b RN r2
bShft RN r3
temp RN riz

isgrt mov b, #0x8000
mov bShft, #15
mov nHat, #0
loop add temp, b, nHat, 1s1#1
subs temp,v,temp,lsl bShft
addge nHat, nHat,b
movge v, temp
sub bShft,bsShft, #1
movs b,b,lsr#l
bne loop
mov r0,nHat
mov pc,lr

