
Chapter 11

Noncommuting Operators and

Uncertainty

11.1 Eigenstates and Commuting Operators

You are probably used to the idea that multiplication is commutative. That is, if
you have a product ab where a and b are scalars, you can write the multiplication in
either order (ab or ba), and the product is exactly the same. This is not necessarily
the case for matrix multiplication! If A and B are matrices, then AB 6= BA in
general. Sometimes it will be true, but not always. Because we can use matrices to
represent operators in quantum mechanics, this means that operators don’t commute
in general. That is, for example, ŜxŜy |ψ〉 6= ŜyŜx |ψ〉.

Sometimes, however, operators do commute. Suppose that you have two observ-
ables A and B with corresponding operators Â and B̂. Suppose also that you have
a state |φ〉 that is a definite state for both A and B. That means that in our mathe-
matical formalism, |φ〉 must be an eigenvector for both Â and B̂:

Â |φ〉 = a |φ〉

B̂ |φ〉 = b |φ〉

Here, a and b are the eigenvalues for Â and B̂ respectively. In other words, |φ〉 has a
definite value of observable A, and a is that value; likewise, it has a definite value of
observable B, and b is that value.

Let us now consider the application of both of these operators to this state |φ〉:

Â B̂ |φ〉 = Â b |φ〉

= b Â |φ〉
= ba |φ〉
= ab |φ〉
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where in the last step we’ve used the fact that a and b are real numbers, so the
product of the two of them does in fact commute. Let’s now try this in the other
order:

B̂ Â |φ〉 = B̂ a |φ〉

= a B̂ |φ〉
= ab |φ〉

Here, we can see that in fact the operators Â and B̂ do commute if they are operating
on a state that is an eigenstate for both operators.

Remember that in the case of spin, we argued that |+z〉 and |−z〉 form a complete
basis set of vectors; that is, any spin state |ψ〉 can be written as a sum of scalar
constants times those two vectors. In general, a complete set of eigenvectors for a
given operator do form a basis set that can be used to construct any vector that is
part of the overall scheme that that operator is part of. (For instance, the projection
of spin along all three axes are part of the same scheme, as they are all the same
kinds of states— that is, spin angular momentum states.) Therefore, we can write
any state |ψ〉 as a sum of constants times the eigenvectors for that operator. If Â and
B̂ are two operators that share the same eigenvectors, then ÂB̂ |ψ〉 = B̂Â |ψ〉. That
is, the operation of these two operators on any state commutes. For that reason, we
generally just say that the operators commute.

11.2 Non-Commuting Operators

In the previous section, we saw that if a particle can be in a definite state for two
observables, then the two operators associated with those observables will commute.
The converse is therefore also true; if two operators do not commute, then it is
not possible for a quantum state to have a definite value of the corresponding two
observables at the same time.

We’ve already seen examples of this. A particle can’t have a definite x spin and
a definite y spin at the same time. If our theory is to be useful, then we would hope
that Ŝx and Ŝy would not commute when they operate on a general normalized state
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|ψ〉. Let’s try it first in one order:

ŜxŜy |ψ〉 =
h̄2

4

[

0 1
1 0

] [

0 −i
i 0

] [

ψ1

ψ2

]

=
h̄2

4

[

0 1
1 0

] [

−iψ2

iψ1

]

=
h̄2

4

[

iψ1

−iψ2

]

= i
h̄2

4

[

ψ1

−ψ2

]

Now let’s try it in the other order:

ŜyŜx |ψ〉 =
h̄2

4

[

0 −i
i 0

] [

0 1
1 0

] [

ψ1

ψ2

]

=
h̄2

4

[

0 −i
i 0

] [

ψ2

ψ1

]

=
h̄2

4

[

−iψ1

iψ2

]

= −i
h̄2

4

[

ψ1

−ψ2

]

Clearly the two are not the same; one is the negative of the other. Therefore, Ŝx and
Ŝy do not commute when operating on a general state ψ, as expected.

It is interesting to note the effect of Ŝz on this same general state:

Ŝz |ψ〉 =
h̄

2

[

1 0
0 −1

] [

ψ1

ψ2

]

=
h̄

2

[

ψ1

−ψ2

]

Notice that except for the constant out front, the vector produced by Ŝz on this state
is the same as the vector produced by ŜxŜy and ŜyŜx. In fact, we can put the two
together:

(ŜxŜy − ŜyŜx) |ψ〉 = i
h̄2

2
|ψ〉

[Ŝx , Ŝy] |ψ〉 = ih̄ Ŝz |ψ〉

The term in brackets, [Ŝx, Ŝy] is called the commutator of Ŝx and Ŝy. It’s defined by

the term in parentheses above it: (ŜxŜy − ŜyŜx). It works out for the commutators
of all three spin angular momentum operators that:

[Ŝx , Ŝy] = ih̄ Ŝz
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[Ŝy , Ŝz] = ih̄ Ŝx

[Ŝz , Ŝx] = ih̄ Ŝy

11.3 Quantifying Uncertainty

If a system is in an indeterminate state for a given observable, it means that we
can’t know exactly what we’re going to measure if we do in fact make a measure-
ment of that observable. We’ve seen that we can calculate the average of all the
measurements we might make, suitably weighted by their probabilities; that’s what
is called the “expectation value” in quantum mechanics. And, we have seen how we
can calculate the amplitude, and from that the probability, that we’ll get any given
possible measurement. With the spin-1/2 system we’ve been talking about, there are
only two possible values that we might measure for the spin along any given axis:
+h̄/2 and −h̄/2. As such, it’s convenient just to list the probability of each. If you
talk about other systems where there are a lot of possible measurements (including
continuous systems such as the position of a particle), it becomes impractical to list
the probabilities of each state. It would be nice to have some other way of quantifying
our uncertainty.

11.3.1 Mean and Variance

Suppose you have a set of values aj. By saying that this is a set, we mean that we
have several values a1, a2, a3, and so forth. The notation aj, in this context, means
that j can be replaced by any integer between 1 and the total number of values that
you have in order to refer to that specific value. Suppose that we have N total values.
The average of all of our values can be written as:

〈a〉 =
1

N

∑

j

aj

The letter Σ is the capital Greek letter “sigma”. This notation means that you sum
together all of the values of aj that you have. For instance, suppose you had just four
values, a1, a2, a3, and a4, then:

∑

j

aj = a1 + a2 + a3 + a4

Therefore, the mean (or average) value of a in this context is:

〈a〉 =
1

N

∑

j

aj =
1

N
(a1 + a2 + a3 + a4)
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To quantify the uncertainty on a set of values, we want to say something about
how far, on average, a given value is from the mean of all the values. Thus, it’s
tempting to try to define the uncertainty as follows:

1

N

∑

j

(aj − 〈a〉)

Remember that addition is commutative. Realizing that the
∑

symbol just indicates
a sum, i.e. a whole lot of addition, we can rewrite this as:

1

N

(

∑

j

aj −
∑

j

〈a〉

)

The second term in the subtraction is a sum over j of the average value. The average
value doesn’t depend on which aj we’re talking about; it’s a constant, it’s the same
for all of them. Therefore, the sum of that number N times is just going to be equal
to N 〈a〉. Making this substitution and distributing the 1/N into the parentheses:

1

N

∑

j

aj −
1

N
N 〈a〉

But we recognize the first term in this subtraction as just 〈a〉. So, the total result
of this is zero. Clearly, this is not a good expression for the uncertainty in a. If you
think about it, the average deviation of aj from 〈a〉 ought to be zero. If 〈a〉 is the
average value of a, then aj should be below 〈a〉 about as often as it is above, so your
sum will have a mix of positive and negative terms. The very definition of the average
insures that this sum will be zero.

Instead, we shall define the variance as:

∆a2 =
1

N

∑

j

(aj − 〈a〉)2

Here, we’re using ∆a to indicate the uncertainty in a. The variance is defined as the
uncertainty squared.1 The advantage of this expression is that because we’re squaring
the difference between each value aj and the average value, we’re always going to be
summing together positive terms; there will be no negative terms to cancel out the
positive terms. Therefore, this should be a reasonable estimate of how far, typically,
the measurements aj are from their average.

1If you know statistics, you may recognizing this as being very similar to how variance is defined

there— only in statistics, we divide by N−1 rather than by N . The difference becomes unimportant

as N gets large.
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We can unpack this sum a bit, first by multiplying out the squared polynomial:

∆2 =
1

N

∑

j

(a2j − 2 〈a〉 aj + 〈a〉2)

In order to clean this expression up, inside the parentheses both add and subtract
〈a〉2:

∆a2 =
1

N

∑

j(a
2
j − 2 〈a〉 aj + 2 〈a〉2 − 〈a〉2)

=
1

N

∑

j(a
2
j − 〈a〉2 + 2 〈a〉 (〈a〉 − aj))

=
1

N

∑

j a
2
j −

1

N

∑

j 〈a〉
2 +

1

N
2 〈a〉

∑

j (〈a〉 − aj)

Notice that the last term is going to be zero, as it includes the average difference
between the mean and each observation. The second term is just going to be 〈a〉2,
because once again 〈a〉 is the same for all terms of the sum; the sum will yield N 〈a〉2,
canceling the N in the denominator. So, we have:

∆a2 =
〈

a2
〉

− 〈a〉2

11.3.2 Uncertainty in Quantum Mechanics

In order to bring this into quantum mechanics, we already know how to calculate the
average 〈a〉, which we call the “expectation value”. If the state of the system is |ψ〉
and the operator corresponding to the observable a is Â, then

〈a〉 =
〈

ψ
∣

∣

∣
Â
∣

∣

∣
ψ
〉

Similarly, now that we recognize that we can interpret Â2 as just applying the operator
Â twice, we can calculate 〈a2〉:

〈

a2
〉

=
〈

ψ
∣

∣

∣
Â2

∣

∣

∣
ψ
〉

For example, let’s consider the state |ψ〉 = |+z〉 and the observable spin-z. We
expect the uncertainty here to be zero, because we know exactly what we’ll get if we
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measure spin-z. Let’s see if it works out that way:

〈sz〉 =
〈

ψ
∣

∣

∣
Ŝz

∣

∣

∣
ψ
〉

=
h̄

2

[

1 0
]

[

1 0
0 −1

] [

1
0

]

=
h̄

2

[

1 0
]

[

1
0

]

=
h̄

2

As expected, the expectation value for spin-z is +h̄/2. For the other part:

〈sz
2〉 =

〈

+z
∣

∣

∣
ŜzŜz

∣

∣

∣
−z
〉

=
h̄2

4

[

1 0
]

[

1 0
0 −1

] [

1 0
0 −1

] [

1
0

]

=
h̄2

4

[

1 0
]

[

1 0
0 −1

] [

1
0

]

=
h̄2

4

[

1 0
]

[

1
0

]

=
h̄2

4

If we take the difference 〈sz
2〉 − 〈sz〉

2, we get h̄2/4 − h̄2/4 = 0, as expected.

What if we want to know the uncertainty on Sx for this state?

〈sx〉 =
〈

+z
∣

∣

∣
Ŝx

∣

∣

∣
+z
〉

=
h̄

2

[

1 0
]

[

0 1
1 0

] [

1
0

]

=
h̄

2

[

1 0
]

[

0
1

]

= 0

If the system is in the state |+z〉, we know that we have a 50% chance each for finding
spin-x to be +h̄/2 or −h̄/2. Thus, it’s no surprise that the average value of spin-x is
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zero, even though zero isn’t a value we might measure. To figure out the variance:

〈sx
2〉 =

〈

+z
∣

∣

∣
ŜxŜx

∣

∣

∣
+z
〉

=
h̄2

4

[

1 0
]

[

0 1
1 0

] [

0 1
1 0

] [

1
0

]

=
h̄2

4

[

1 0
]

[

0 1
1 0

] [

0
1

]

=
h̄2

4

[

1 0
]

[

1
0

]

=
h̄2

4

Thus, in this case, the formal uncertainty ∆sx on the x-spin is h̄/2.

11.4 The Heisenberg Uncertainty Principle

As previously stated, quantifying the uncertainty on a given observable for a given
quantum state is more interesting when the observable we’re talking about has a large
number (or even a continuum) of different values it might take on. If you consider
two different observables whose operators do not commute, then a system cannot be
in a definite state for both of those observables at the same time. The Heisenberg
Uncertainty Principle takes this observation, makes it stronger, and quantifies it.

Consider a quantum particle that can move along one direction. Its position is
then x, and its momentum along that direction is px. The Heisenberg Uncertainty
Principle states that:

∆x∆px ≥
h̄

2

We’ve gotten used to thinking of h̄ as an angular momentum unit, because that’s
where it’s shown up before. However, here, it’s not really an angular momentum,
though it still does of course have the same units (position times position over time).
Instead, it represents the fundamental limit in quantum mechanics on how well you
can know two different observables, position and momentum. If you know one of
them perfectly, e.g. ∆x = 0, then the uncertainty in the other one must be infinite.
Although in more advanced quantum mechanics we use such states as they’re a good
approximation for a lot of things, they’re not really physical. In reality, most quantum
systems have a small amount of uncertainty in both position and momentum. That
is, a particle doesn’t have a definite position or a definite momentum, but the range
of positions for which it has an appreciable amplitude is confined to a small space,
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and the range of momenta for which it has an appreciable amplitude is confined to a
small range.

As a concrete example, let’s consider an electron. For a non-relativistic electron,
its momentum is just p = mv, where m is its mass and v is its speed. Therefore,
∆p = m∆v, as the mass is well known and there is no uncertainty in it. What
is a good uncertainty in speed to consider? For practical purposes, let’s suppose
that we’re doing an experiment with an electron that requires it to be localized for
1 second. We don’t want the uncertainty in the speed of the electron to cause our
uncertainty in the position after one second to be greater than the uncertainty in the
position was in the first place. So, we shall choose ∆v = ∆x/t, where we’ll put in
t = 1 second. If we then put this into the uncertainty principle

∆x∆p ≥
h̄

2

∆xme

∆x

t
≥

h̄

2

∆x ≥

√

h̄ t

2me

If you put in the numbers, you find that the uncertainty on the position of this
electron is 0.01 m, or one centimeter. For an electron, that’s a lot! (One could argue
about whether or not 1 second is a reasonable timescale. When we get to talking
about atoms, we’ll think more carefully about what a reasonable timescale is.)

Notice, however, that the uncertainty in the position goes down as the mass
goes up. Imagine that you stood still your entire life. If you want to balance the
uncertainty in your starting position with the uncertainty in your position resulting
from the uncertainty in your velocity over your entire life, then you’d put in your age
for t. Let us assume, optimistically, that you will live 100 years (3 × 109 seconds),
and that your mass is 80 kg. If you put those numbers in to the equation above, you
find out that the uncertainty on your position is 4 × 10−14 m. In other words, even
though quantum uncertainty can be pretty important for an electron, on everyday
scales for macroscopic objects the effect of quantum uncertainty is utterly negligible.

11.4.1 An Alternate Formulation

An alternate way to formulate Heisenberg’s Uncertainty principle is:

∆E∆t ≥
h̄

2

The interpretation of this is a little less clear than in the case of position and mo-
mentum. Uncertainty in energy seems obvious enough; it’s the square root of the
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variance of all the values of energy that might be measured for a particle in a given
quantum state. But what is “uncertainty on time”? Rather than interpreting this as
an uncertainty, we shall interpret it as a time interval. In a sense, that’s the same
thing; an interval of time is qualitatively similar to an uncertainty on what time it is.

What this means, then, is that the uncertainty in the energy of a quantum state
is related to how long that state hangs around. If a system is in an energy eigenstate,
then it has a definite energy and ∆E = 0. Such a state must be stable then, for ∆t
has to be infinite. In other words, in the absence of any interactions, a particle in an
energy eigenstate will stay, forever, in an energy eigenstate.

For small time intervals, however, there will be a finite uncertainty in the energy
of a system. One thing that this means is that it becomes possible to violate the
conservation of energy, so long as you do it so fast that nobody can catch you at it!
Among other things, this leads to the possibility of quantum tunneling– that is, if a
particle is up against a potential barrier it doesn’t have enough energy to penetrate,
there is some finite probability that the particle may be located inside the barrier.
And, the particle may be able to cross the barrier, even though classically it could
not.

Later, when we talk about atoms, states other than the ground state (i.e. lowest-
energy state) of the atom aren’t going to be perfectly stable. Over time, they will
decay to the ground state, with a characteristic lifetime analogous to the half-life
of a radioactive isotope. Although we will describe these excited states as being
energy eigenstates, the fact that they decay tells us that they can’t exactly be energy
eigenstates. It also tells us that there must be some uncertainty as to the exact
energy value associated with those states. There will be observational consequences
of this, although in practice for real atoms these consequences are extremely difficult
to observe.

11.4.2 Vacuum Energy

A second consequence of this formulation of the Heisenberg Uncertainty Principle is
the possibility of vacuum energy. Consider a small region of space. Suppose that it’s
empty; that is, you’ve taken out everything you can take out of it, including atoms,
light (photons), dark matter, and so forth. Make sure that there are no quantum
systems anywhere with non-negligible probability for being found in this region of
space. Over a finite time interval ∆t, you can’t be sure exactly how much energy
there is in this region of space; your uncertainty in the amount of energy must be at
least ∆E = h̄

2∆t
. As a result, there may be energy in the vacuum.

What is the expectation value of this energy? You might predict that the expec-
tation should be 0, even though the uncertainty has to be greater than zero. Figuring
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it out requires going into relativistic quantum mechanics, called quantum field the-
ory. Unfortunately, even quantum field theory can’t calculate that right, for naive
estimates of what you’d get (the best we can really do) gives a value of the vacuum
energy density that is so high that it would prevent galaxies from ever having formed
in our Universe. The fact that you are reading this indicates that this estimate can-
not be right. Indeed, quantum field theory estimates a value for the vacuum energy
density that is 120 orders of magnitude too big! That’s pretty far off. As such, we
have to say that we don’t completely understand the nature of vacuum energy.

What form would this vacuum energy take? We’ve already seen that in a finite
time interval ∆t, we can’t say with certainty that the vacuum has zero energy. In
quantum field theory, it becomes possible to create and destroy particles, as long as
you obey all of the conservation laws. For example, two photons can interact and
create an electron/positron pair, where a positron is the antimatter partner to an
electron. If you don’t have to worry about conserving energy, however, you can create
a positron/electron pair out of absolutely nothing . . . as long as they re-annihilate back
to absolutely nothing fast enough. For every fundamental particle that exists, this
sort of thing is going on around us all the time.

What is the net energy density of the vacuum as a result of all of this? For a
long time, many physicists assumed that a various terms would cancel out to zero;
the naive calculations indicated something absurd, and the most natural result if
those calculations are wrong is that things would cancel out. However, in the last ten
years, observations of the expansion of the Universe have shown that the expansion
is accelerating; indeed, these astronomical observations were the source of the 2011
Nobel Prize in Physics. We don’t know what is causing this, and have given the name
“dark energy” to whatever it is that is causing it. The simplest explanation for dark
energy is that it is vacuum energy. Measurements from cosmology indicate a vacuum
energy density corresponding to about 10−29 grams per cubic centimeter. That is, the
energy density of vacuum energy is 29 orders of magnitude less than the mass-energy
density of water. Obviously, we can ignore this in our every day life. However, if you
look at the Universe as a whole, most of it is empty; our planet is a very special place
that is, compared to most of the Universe, extremely dense with regular atoms. In
the Universe as a whole, dark energy makes up three quarters of the energy density.
Even though this density may be 120 orders of magnitude smaller than what naive
estimates from our theory would suggest, it is coming to dominate the evolution of
our Universe.
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